Reactive control of isolated unsteady streaks in a laminar boundary layer

2016 ◽  
Vol 795 ◽  
pp. 808-846 ◽  
Author(s):  
Kyle M. Bade ◽  
Ronald E. Hanson ◽  
Brandt A. Belson ◽  
Ahmed M. Naguib ◽  
Philippe Lavoie ◽  
...  

This study is motivated by controlling transient growth and subsequent bypass transition of the laminar boundary layer to turbulence. In experiments employing a model problem, an active roughness element is used to introduce steady/unsteady streak disturbances in a Blasius boundary layer. This tractable arrangement enables a systematic investigation of the evolution of the disturbances and of potential methods to control them in real time. The control strategy utilizes wall-shear-stress sensors, upstream and downstream of a plasma actuator, as inputs to a model-based controller. The controller is designed using empirical input/output data to determine the parameters of simple models, approximating the boundary layer dynamics. The models are used to tune feedforward and feedback controllers. The control effect is examined over a range of roughness-element heights, free stream velocities, feedback sensor positions, unsteady disturbance frequencies and control strategies; and is found to nearly completely cancel the steady-state disturbance at the downstream sensor location. The control of unsteady disturbances exhibits a limited bandwidth of less than 1.3 Hz. However, concurrent modelling demonstrates that substantially higher bandwidth is achievable by improving the feedforward controller and/or optimizing the feedback sensor location. Moreover, the model analysis shows that the difference in the convective time delay of the roughness- and actuator-induced disturbances over the control domain must be known with high accuracy for effective feedforward control. This poses a limitation for control effectiveness in a stochastic environment, such as in bypass transition beneath a turbulent free stream; nonetheless, feedback can remedy some of this limitation.

1992 ◽  
Vol 242 ◽  
pp. 701-720 ◽  
Author(s):  
M. Tadjfar ◽  
R. J. Bodonyi

Receptivity of a laminar boundary layer to the interaction of time-harmonic free-stream disturbances with a three-dimensional roughness element is studied. The three-dimensional nonlinear triple–deck equations are solved numerically to provide the basic steady-state motion. At high Reynolds numbers, the governing equations for the unsteady motion are the unsteady linearized three-dimensional triple-deck equations. These equations can only be solved numerically. In the absence of any roughness element, the free-stream disturbances, to the first order, produce the classical Stokes flow, in the thin Stokes layer near the wall (on the order of our lower deck). However, with the introduction of a small three-dimensional roughness element, the interaction between the hump and the Stokes flow introduces a spectrum of all spatial disturbances inside the boundary layer. For supercritical values of the scaled Strouhal number, S0 > 2, these Tollmien–Schlichting waves are amplified in a wedge-shaped region, 15° to 18° to the basic-flow direction, extending downstream of the hump. The amplification rate approaches a value slightly higher than that of two-dimensional Tollmien–Schlichting waves, as calculated by the linearized analysis, far downstream of the roughness element.


Author(s):  
E. J. Walsh ◽  
F. Brighenti ◽  
D. M. McEligot

The evolution of the laminar boundary layer over a flat plate under a free stream turbulence intensity of 1.3% is analysed. The effect of free stream turbulence on the onset of transition is one of the important sources leading to bypass transition. Such disturbances are of great interest in engineering for the prediction of transition on turbine blades. The study concentrates on the early part of the boundary layer, starting from the leading edge, and is characterised by the presence of streamwise elongated regions of high and low streamwise velocity. It is demonstrated that the so called “Klebanoff modes” are not entirely representative of the flow structures, due to the time-averaged representations used in most studies. For the conditions of this investigation it is found that the urms and the peak disturbances remain constant in the early stages of the transition development. This region, in which the streaks strength is constant, is problematic for many theories as it is not known where on a surface to initiate a growth theory calculation, and hence the prediction of transition onset is difficult. The observation that a constant urms region exists within the boundary layer under these conditions may be the source of great difficulty in predicting transition onset under turbulence levels around 1%. This region suggests that the streaks are either continuously generated and damped, or do not grow during the early stage of transition, and highlights the importance of continuous influence of the free stream turbulence along the boundary layer edge. This work concludes that the first is more likely, and furthermore the measurements are shown to agree with recent direct numerical simulations.


2001 ◽  
Vol 428 ◽  
pp. 185-212 ◽  
Author(s):  
R. G. JACOBS ◽  
P. A. DURBIN

Bypass transition in an initially laminar boundary layer beneath free-stream turbulence is simulated numerically. New perspectives on this phenomenon are obtained from the numerical flow fields. Transition precursors consist of long backward jets contained in the fluctuating u-velocity field; they flow backwards relative to the local mean velocity. The jets extend into the upper portion of the boundary layer, where they interact with free-stream eddies. In some locations a free-stream perturbation to the jet shear layer develops into a patch of irregular motion – a sort of turbulent spot. The spot spreads longitudinally and laterally, and ultimately merges into the downstream turbulent boundary layer. Merging spots maintain the upstream edge of the turbulent region. The jets, themselves, are produced by low-frequency components of the free-stream turbulence that penetrate into the laminar boundary layer. Backward jets are a component of laminar region streaks.A method to construct turbulent inflow from Orr–Sommerfeld continuous modes is described. The free-stream turbulent intensity was chosen to correspond with the experiment by Roach & Brierly (1990). Ensemble-averaged numerical data are shown to be in good agreement with laboratory measurements.


2007 ◽  
Vol 585 ◽  
pp. 41-71 ◽  
Author(s):  
FREDRIK LUNDELL

The present wind-tunnel experiment demonstrates that a reactive control system is able to decrease the amplitude of random disturbances in a flat-plate boundary layer. The disturbances were induced in a laminar boundary layer by a turbulent free stream. The control system consisted of upstream wall-shear-stress sensors (wall wires) and downstream actuators (suction through holes). An ad hoc threshold-and-delay control algorithm is evaluated and parameter variations were performed in order to find a suitable working point of the control system. Detailed measurements of the flow field show how the control influences the disturbances in the boundary layer, whereas the effect on the mean flow owing to the control is minute. The control system manages to inhibit the growth of the fluctuations of the streamwise velocity component for a considerable distance downstream of the two actuator positions. Further downstream, however, the amplitudes of the fluctuations grow again. The flow rate used to obtain the control effect is one sixth of that necessary if continuous distributed suction is used to reach the same control objective. Finally, correlations and spectra show that the elongation of the structures in the streamwise direction is eliminated in the regions where the control has the largest effect. The spanwise scale of the disturbances is not affected by the control.


2015 ◽  
Vol 772 ◽  
pp. 445-477 ◽  
Author(s):  
P. Phani Kumar ◽  
A. C. Mandal ◽  
J. Dey

Streamwise streaks, their lift-up and streak instability are integral to the bypass transition process. An experimental study has been carried out to find the effect of a mesh placed normal to the flow and at different wall-normal locations in the late stages of two transitional flows induced by free-stream turbulence (FST) and an isolated roughness element. The mesh causes an approximately 30 % reduction in the free-stream velocity, and mild acceleration, irrespective of its wall-normal location. Interestingly, when located near the wall, the mesh suppresses several transitional events leading to transition delay over a large downstream distance. The transition delay is found to be mainly caused by suppression of the lift-up of the high-shear layer and its distortion, along with modification of the spanwise streaky structure to an orderly one. However, with the mesh well away from the wall, the lifted-up shear layer remains largely unaffected, and the downstream boundary layer velocity profile develops an overshoot which is found to follow a plane mixing layer type profile up to the free stream. Reynolds stresses, and the size and strength of vortices increase in this mixing layer region. This high-intensity disturbance can possibly enhance transition of the accelerated flow far downstream, although a reduction in streamwise turbulence intensity occurs over a short distance downstream of the mesh. However, the shape of the large-scale streamwise structure in the wall-normal plane is found to be more or less the same as that without the mesh.


Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


1997 ◽  
Vol 119 (3) ◽  
pp. 405-411 ◽  
Author(s):  
R. E. Mayle ◽  
A. Schulz

A theory is presented for calculating the fluctuations in a laminar boundary layer when the free stream is turbulent. The kinetic energy equation for these fluctuations is derived and a new mechanism is revealed for their production. A methodology is presented for solving the equation using standard boundary layer computer codes. Solutions of the equation show that the fluctuations grow at first almost linearly with distance and then more slowly as viscous dissipation becomes important. Comparisons of calculated growth rates and kinetic energy profiles with data show good agreement. In addition, a hypothesis is advanced for the effective forcing frequency and free-stream turbulence level that produce these fluctuations. Finally, a method to calculate the onset of transition is examined and the results compared to data.


Author(s):  
R. E. Mayle ◽  
A. Schulz

A theory is presented for calculating the fluctuations in a laminar boundary layer when the free stream is turbulent. The kinetic energy equation for these fluctuations is derived and a new mechanism is revealed for their production. A methodology is presented for solving the equation using standard boundary layer computer codes. Solutions of the equation show that the fluctuations grow at first almost linearly with distance and then more slowly as viscous dissipation becomes important. Comparisons of calculated growth rates and kinetic energy profiles with data show good agreement. In addition, a hypothesis is advanced for the effective forcing frequency and free-stream turbulence level which produce these fluctuations. Finally, a method to calculate the onset of transition is examined and the results compared to data.


Sign in / Sign up

Export Citation Format

Share Document