Large eddy simulation of propeller wake instabilities

2017 ◽  
Vol 814 ◽  
pp. 361-396 ◽  
Author(s):  
Praveen Kumar ◽  
Krishnan Mahesh

The wake of a five-bladed marine propeller at design operating condition is studied using large eddy simulation (LES). The mean loads and phase-averaged flow field show good agreement with experiments. Phase-averaged and azimuthal-averaged flow fields are analysed in detail to examine the mechanisms of wake instability. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual-induction mechanism of instability where, instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. It is argued that although the mutual-inductance mode is the dominant mode of instability in propellers, the actual mechanism depends on the propeller geometry and the operating conditions. The axial evolution of the propeller wake from near to far field is discussed. Once the propeller wake becomes unstable, the coherent vortical structures break up and evolve into the far wake, composed of a fluid mass swirling around an oscillating hub vortex. The hub vortex remains coherent over the length of the computational domain.

Author(s):  
Florent Duchaine

This article presents a parametric numerical study to analyze the sensitivity of wall heat fluxes on an academic acoustic liner to inlet conditions. Large Eddy Simulation (LES) is used to simulate an array of 20 aligned honeycomb cells on a flat plate with 10% porosity characteristic of installed liners. The computational domain is periodic in the span direction comprising 2 honeycomb cells. The operating conditions are representative of cruise with a Mach number of 0.5 at ambient pressure and temperature. Comparisons of heat fluxes obtained on a none perforated flat plate with the honeycomb liner are proposed with different inlet conditions: steady laminar boundary layer profile, turbulence injection and acoustic perturbation injection at different frequencies. Results show that for the operating condition and the boundary layer thickness used, large differences are observed on the first cells of the liners resulting from different transition to turbulence processes. A first important difference exists from laminar and turbulent conditions where turbulent conditions exhibits higher heat fluxes as expected. Then, case pulsed at the resonant frequency of the honeycomb shows higher heat fluxes than other frequencies. Finally, after a given number of cells, the heat fluxes reach an asymptotic behavior at the same level which seems to be controlled by the turbulence generated by the interaction of the flow and the perforations whatever the inlet conditions.


Author(s):  
Xiaofeng Yang ◽  
Saurabh Gupta ◽  
Tang-Wei Kuo ◽  
Venkatesh Gopalakrishnan

A comparative cold flow analysis between Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) cycle-averaged velocity and turbulence predictions is carried out for a single cylinder engine with a transparent combustion chamber (TCC) under motored conditions using high-speed particle image velocimetry (PIV) measurements as the reference data. Simulations are done using a commercial computationally fluid dynamics (CFD) code CONVERGE with the implementation of standard k-ε and RNG k-ε turbulent models for RANS and a one-equation eddy viscosity model for LES. The following aspects are analyzed in this study: The effects of computational domain geometry (with or without intake and exhaust plenums) on mean flow and turbulence predictions for both LES and RANS simulations. And comparison of LES versus RANS simulations in terms of their capability to predict mean flow and turbulence. Both RANS and LES full and partial geometry simulations are able to capture the overall mean flow trends qualitatively; but the intake jet structure, velocity magnitudes, turbulence magnitudes, and its distribution are more accurately predicted by LES full geometry simulations. The guideline therefore for CFD engineers is that RANS partial geometry simulations (computationally least expensive) with a RNG k-ε turbulent model and one cycle or more are good enough for capturing overall qualitative flow trends for the engineering applications. However, if one is interested in getting reasonably accurate estimates of velocity magnitudes, flow structures, turbulence magnitudes, and its distribution, they must resort to LES simulations. Furthermore, to get the most accurate turbulence distributions, one must consider running LES full geometry simulations.


2018 ◽  
Vol 180 ◽  
pp. 02054
Author(s):  
Martin Lasota ◽  
Petr Šidlof

The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.


Author(s):  
S. Puggelli ◽  
D. Bertini ◽  
L. Mazzei ◽  
A. Andreini

During the last years aero-engines are progressively evolving toward design concepts that permit improvements in terms of engine safety, fuel economy and pollutant emissions. With the aim of satisfying the strict NOx reduction targets imposed by ICAO-CAEP, lean burn technology is one of the most promising solutions even if it must face safety concerns and technical issues. Hence a depth insight on lean burn combustion is required and Computational Fluid Dynamics (CFD) can be a useful tool for this purpose. In this work a comparison in Large-Eddy Simulation (LES) framework of two widely employed combustion approaches like the Artificially Thickened Flame (ATF) and the Flamelet Generated Manifold (FGM) is performed using ANSYS® Fluent v16.2. Two literature test cases with increasing complexity in terms of geometry, flow field and operating conditions are considered. Firstly, capabilities of FGM are evaluated on a single swirler burner operating at ambient pressure with a standard pressure atomizer for spray injection. Then a second test case, operated at 4 bar, is simulated. Here kerosene fuel is burned after an injection through a prefilming airblast atomizer within a co-rotating double swirler. Obtained comparisons with experimental results show the different capabilities of ATF and FGM in modelling the partially-premixed behaviour of the flame and provides an overview of the main strengths and limitations of the modelling strategies under investigation.


2020 ◽  
Vol 19 (3-5) ◽  
pp. 207-239
Author(s):  
Saman Salehian ◽  
Reda R Mankbadi

The focus of this work is on understanding the effect of water injection from the launch pad on the noise generated during rocket’s lift-off. To simplify the problem, we consider a supersonic jet impinging on a flat plate with water injection from the impingement plate. The Volume of Fluid model is adopted in this work to simulate the two-phase flow. A Hybrid Large Eddy Simulation – Unsteady Reynolds Averaged Simulation approach is employed to model turbulence, wherein Unsteady Reynolds Averaged Simulation is used near the walls, and Large Eddy Simulation is used elsewhere in the computational domain. The numerical issues associated with simulating the noise of two-phase supersonic flow are addressed. The pressure fluctuations on the impingement plate obtained from numerical simulations agree well with the experimental data. Furthermore, the predicted effect of water injection on the far-field broadband noise is consistent with that of the experiment. The possible mechanisms for noise reduction by water injection are discussed.


Author(s):  
Sunil Patil ◽  
Danesh Tafti

Large eddy simulations of swirling flow and the associated convective heat transfer in a gas turbine can combustor under cold flow conditions for Reynolds numbers of 50,000 and 80,000 with a characteristic Swirl number of 0.7 are carried out. A precursor Reynolds averaged Navier-Stokes (RANS) simulation is used to provide the inlet boundary conditions to the large-eddy simulation (LES) computational domain, which includes only the can combustor. A stochastic procedure based on the classical view of turbulence as a superposition of the coherent structures is used to simulate the turbulence at the inlet plane of the computational domain using the mean flow velocity and Reynolds stress data from the precursor RANS simulation. To further reduce the overall computational resource requirement and the total computational time, the near wall region is modeled using a zonal two layer model (WMLES). A novel formulation in the generalized co-ordinate system is used for the solution of effective tangential velocity and temperature in the inner layer virtual mesh. The WMLES predictions are compared with the experimental data of Patil et al. (2011, “Experimental and Numerical Investigation of Convective Heat Transfer in Gas Turbine Can Combustor,” ASME J. Turbomach., 133(1), p. 011028) for the local heat transfer distribution on the combustor liner wall obtained using robust infrared thermography technique. The heat transfer coefficient distribution on the liner wall predicted from the WMLES is in good agreement with experimental values. The location and the magnitude of the peak heat transfer are predicted in very close agreement with the experiments.


Author(s):  
Ying Huai ◽  
Amsini Sadiki

In this work, Large Eddy Simulation (LES) has been carried out to analyze the turbulent mixing processes in an impinging jet configuration. To characterize and quantify turbulent mixing processes, in terms of scalar structures and degree of mixing, three parameters have been basically introduced. They are “mixedness parameter”, which represents the probability of mixed fluids in computational domain, the Spatial Mixing Deficiency (SMD) and the Temporal Mixing Deficiency (TMD) parameters for characterizing the mixing at different scalar scale degrees. With help of these parameters, a general mixing optimization procedure has then been suggested and achieved in an impinging jet configuration. An optimal jet angle was estimated and the overall mixing degree with this jet angle reached around six times more than the original design. It turns out that the proposed idea and methodology can be helpful for practical engineering design processes.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Site Hu ◽  
Chao Zhou ◽  
Zhenhua Xia ◽  
Shiyi Chen

This study investigates the aerodynamic performance of a low-pressure turbine, namely the T106C, by large eddy simulation (LES) and coarse grid direct numerical simulation (CDNS) at a Reynolds number of 100,000. Existing experimental data were used to validate the computational fluid dynamics (CFD) tool. The effects of subgrid scale (SGS) models, mesh densities, computational domains and boundary conditions on the CFD predictions are studied. On the blade suction surface, a separation zone starts at a location of about 55% along the suction surface. The prediction of flow separation on the turbine blade is always found to be difficult and is one of the focuses of this work. The ability of Smagorinsky and wall-adapting local eddy viscosity (WALE) model in predicting the flow separation is compared. WALE model produces better predictions than the Smagorinsky model. CDNS produces very similar predictions to WALE model. With a finer mesh, the difference due to SGS models becomes smaller. The size of the computational domain is also important. At blade midspan, three-dimensional (3D) features of the separated flow have an effect on the downstream flows, especially for the area near the reattachment. By further considering the effects of endwall secondary flows, a better prediction of the flow separation near the blade midspan can be achieved. The effect of the endwall secondary flow on the blade suction surface separation at the midspan is explained with the analytical method based on the Biot–Savart Law.


2018 ◽  
Vol 853 ◽  
pp. 537-563 ◽  
Author(s):  
Praveen Kumar ◽  
Krishnan Mahesh

Wall-resolved large-eddy simulation (LES) is used to simulate flow over an axisymmetric body of revolution at a Reynolds number, $Re=1.1\times 10^{6}$, based on the free-stream velocity and the length of the body. The geometry used in the present work is an idealized submarine hull (DARPA SUBOFF without appendages) at zero angle of pitch and yaw. The computational domain is chosen to avoid confinement effects and capture the wake up to fifteen diameters downstream of the body. The unstructured computational grid is designed to capture the fine near-wall flow structures as well as the wake evolution. LES results show good agreement with the available experimental data. The axisymmetric turbulent boundary layer has higher skin friction and higher radial decay of turbulence away from the wall, compared to a planar turbulent boundary layer under similar conditions. The mean streamwise velocity exhibits self-similarity, but the turbulent intensities are not self-similar over the length of the simulated wake, consistent with previous studies reported in the literature. The axisymmetric wake shifts from high-$Re$ to low-$Re$ equilibrium self-similar solutions, which were only observed for axisymmetric wakes of bluff bodies in the past.


Author(s):  
Marcos André de Oliveira ◽  
Paulo Guimarães de Moraes ◽  
Luiz Antonio Alcântara Pereira

Sign in / Sign up

Export Citation Format

Share Document