Properties of the mean momentum balance in polymer drag-reduced channel flow

2017 ◽  
Vol 834 ◽  
pp. 409-433 ◽  
Author(s):  
C. M. White ◽  
Y. Dubief ◽  
J. Klewicki

Mean momentum equation based analysis of polymer drag-reduced channel flow is performed to evaluate the redistribution of mean momentum and the mechanisms underlying the redistribution processes. Similar to channel flow of Newtonian fluids, polymer drag-reduced channel flow is shown to exhibit a four layer structure in the mean balance of forces that also connects, via the mean momentum equation, to an underlying scaling layer hierarchy. The self-similar properties of the flow related to the layer hierarchy appear to persist, but in an altered form (different from the Newtonian fluid flow), and dependent on the level of drag reduction. With increasing drag reduction, polymer stress usurps the role of the inertial mechanism, and because of this the wall-normal position where inertially dominated mean dynamics occurs moves outward, and viscous effects become increasingly important farther from the wall. For the high drag reduction flows of the present study, viscous effects become non-negligible across the entire hierarchy and an inertially dominated logarithmic scaling region ceases to exist. It follows that the state of maximum drag reduction is attained only after the inertial sublayer is eradicated. According to the present mean equation theory, this coincides with the loss of a region of logarithmic dependence in the mean profile.

2007 ◽  
Vol 572 ◽  
pp. 179-188 ◽  
Author(s):  
THOMAS BOECK ◽  
DMITRY KRASNOV ◽  
EGBERT ZIENICKE

Mean flow properties of turbulent magnetohydrodynamic channel flow with electrically insulating channel walls are studied using high-resolution direct numerical simulations. The Lorentz force due to the homogeneous wall-normal magnetic field is computed in the quasi-static approximation. For strong magnetic fields, the mean velocity profile shows a clear three-layer structure consisting of a viscous region near each wall and a plateau in the middle connected by logarithmic layers. This structure reflects the significance of viscous, turbulent, and electromagnetic stresses in the streamwise momentum balance dominating the viscous, logarithmic, and plateau regions, respectively. The width of the logarithmic layers changes with the ratio of Reynolds- and Hartmann numbers. Turbulent stresses typically decay more rapidly away from the walls than predicted by mixing-length models.


2019 ◽  
Vol 880 ◽  
pp. 864-889
Author(s):  
Alireza Ebadi ◽  
Christopher M. White ◽  
Ian Pond ◽  
Yves Dubief

The mean dynamics in oscillatory channel flow is examined to investigate the dynamical mechanisms underlying the transition to turbulence in oscillatory wall-bounded flow. The analyses employ direct numerical simulation data acquired at three Stokes Reynolds numbers: $Re_{s}=648$, 801 and 1009, where the lower $Re_{s}$ flow is transitional over the entire cycle and the two higher $Re_{s}$ flows exhibit flow characteristics similar to steady turbulent wall-bounded flow during part of the cycle. The flow evolution over a half-period of oscillation for all three $Re_{s}$ is as follows: near-wall streamwise velocity streaks develop during the early accelerating portion of the cycle; then at some later point in the cycle that depends on $Re_{s}$, the near-wall streaks breakdown (demarking the onset of the nonlinear development stage), and the near-wall Reynolds stress grows explosively; the Reynolds stress remains elevated for part of the cycle before diminishing (yet remaining finite) during the late decelerating portion of the cycle. This process is then repeated indefinitely. The present findings demonstrate that transition to turbulence occurs when the nonlinear development stage begins during the accelerating portion of the cycle. This crucially leads to the diminishing importance of the centreline momentum source, the emergence of a locally accelerating/decelerating internal layer centred about the edge of the Stokes layer and the wall-normal rearrangement of the mean forces prior to the start of the decelerating portion of the cycle. The rearrangement of mean forces culminates in a four layer structure in the mean balance of forces. This is significant on a number of accounts since empirical and theoretical evidence suggests that the formation of a four layer structure is an important characteristic of a self-similar hierarchal structure that underlies logarithmic dependence of the mean velocity profile in steady turbulent wall-bounded flows (Klewicki et al., J. Fluid Mech., vol. 638, 2009, pp. 73–93). When the nonlinear development stage begins during the decelerating portion of the cycle (i.e. at $Re_{s}=648$), a four layer structure is not observed in the mean balance of forces and the flow remains weakly transitional over the entire cycle.


2016 ◽  
Vol 792 ◽  
pp. 435-469 ◽  
Author(s):  
R. L. Ebner ◽  
Faraz Mehdi ◽  
J. C. Klewicki

The structure of smooth- and rough-wall turbulent boundary layers is investigated using existing data and newly acquired measurements derived from a four element spanwise vorticity sensor. Scaling behaviours and structural features are interpreted using the mean momentum equation based framework described for smooth-wall flows by Klewicki (J. Fluid Mech., vol. 718, 2013, pp. 596–621), and its extension to rough-wall flows by Mehdiet al.(J. Fluid Mech., vol. 731, 2013, pp. 682–712). This framework holds potential relative to identifying and characterizing universal attributes shared by smooth- and rough-wall flows. As prescribed by the theory, the present analyses show that a number of statistical features evidence invariance when normalized using the characteristic length associated with the wall-normal transition to inertial leading-order mean dynamics. On the inertial domain, the spatial size of the advective transport contributions to the mean momentum balance attain approximate proportionality with this length over significant ranges of roughness and Reynolds number. The present results support the hypothesis of Mehdiet al., that outer-layer similarity is, in general, only approximately satisfied in rough-wall flows. This is because roughness almost invariably leaves some imprint on the vorticity field; stemming from the process by which roughness influences (generally augments) the near-wall three-dimensionalization of the vorticity field. The present results further indicate that the violation of outer similarity over regularly spaced spanwise oriented bar roughness correlates with the absence of scale separation between the motions associated with the wall-normal velocity and spanwise vorticity on the inertial domain.


2008 ◽  
Vol 617 ◽  
pp. 107-140 ◽  
Author(s):  
M. METZGER ◽  
A. LYONS ◽  
P. FIFE

Moderately favourable pressure gradient turbulent boundary layers are investigated within a theoretical framework based on the unintegrated two-dimensional mean momentum equation. The present theory stems from an observed exchange of balance between terms in the mean momentum equation across different regions of the boundary layer. This exchange of balance leads to the identification of distinct physical layers, unambiguously defined by the predominant mean dynamics active in each layer. Scaling domains congruent with the physical layers are obtained from a multi-scale analysis of the mean momentum equation. Scaling behaviours predicted by the present theory are evaluated using direct measurements of all of the terms in the mean momentum balance for the case of a sink-flow pressure gradient generated in a wind tunnel with a long development length. Measurements also captured the evolution of the turbulent boundary layers from a non-equilibrium state near the wind tunnel entrance towards an equilibrium state further downstream. Salient features of the present multi-scale theory were reproduced in all the experimental data. Under equilibrium conditions, a universal function was found to describe the decay of the Reynolds stress profile in the outer region of the boundary layer. Non-equilibrium effects appeared to be manifest primarily in the outer region, whereas differences in the inner region were attributed solely to Reynolds number effects.


2011 ◽  
Vol 682 ◽  
pp. 617-651 ◽  
Author(s):  
J. KLEWICKI ◽  
R. EBNER ◽  
X. WU

The dynamical mechanisms underlying the redistribution of mean momentum and vorticity are explored for transitional two-dimensional boundary-layer flow at nominally zero pressure gradient. The analyses primarily employ the direct numerical simulation database of Wu & Moin (J. Fluid Mech., vol. 630, 2009, p. 5), but are supplemented with verifications utilizing subsequent similar simulations. The transitional regime is taken to include both an instability stage, which effectively generates a finite Reynolds stress profile, −ρuv(y), and a nonlinear development stage, which progresses until the terms in the mean momentum equation attain the magnitude ordering of the four-layer structure revealed by Wei et al. (J. Fluid Mech., vol. 522, 2005, p. 303). Self-consistently applied criteria reveal that the third layer of this structure forms first, followed by layers IV and then II and I. For the present flows, the four-layer structure is estimated to be first realized at a momentum thickness Reynolds number Rθ = U∞ θ/ν ≃ 780. The first-principles-based theory of Fife et al. (J. Disc. Cont. Dyn. Syst. A, vol. 24, 2009, p. 781) is used to describe the mean dynamics in the laminar, transitional and four-layer regimes. As in channel flow, the transitional regime is marked by a non-negligible influence of all three terms in the mean momentum equation at essentially all positions in the boundary layer. During the transitional regime, the action of the Reynolds stress gradient rearranges the mean viscous force and mean advection profiles. This culminates with the segregation of forces characteristic of the four-layer regime. Empirical and theoretical evidence suggests that the formation of the four-layer structure also underlies the emergence of the mean dynamical properties characteristic of the high-Reynolds-number flow. These pertain to why and where the mean velocity profile increasingly exhibits logarithmic behaviour, and how and why the Reynolds stress distribution develops such that the inner normalized position of its peak value, ym+, exhibits a Reynolds number dependence according to $y_m^+ {\,\simeq\,} 1.9 \sqrt{\delta^+}$.


Author(s):  
Joe Klewicki ◽  
Paul Fife ◽  
Tie Wei ◽  
Pat McMurtry

Recent studies by the present authors have empirically and analytically explored the properties and scaling behaviours of the Reynolds averaged momentum equation as applied to wall-bounded flows. The results from these efforts have yielded new perspectives regarding mean flow structure and dynamics, and thus provide a context for describing flow physics. A physical model of the turbulent boundary layer is constructed such that it is consonant with the dynamical structure of the mean momentum balance, while embracing independent experimental results relating, for example, to the statistical properties of the vorticity field and the coherent motions known to exist. For comparison, the prevalent, well-established, physical model of the boundary layer is briefly reviewed. The differences and similarities between the present and the established models are clarified and their implications discussed.


1978 ◽  
Vol 100 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Samuel Hassid ◽  
Michael Poreh

A turbulent-energy-dissipation model is proposed for flows with and without drag reduction. The model is based on an eddy diffusivity approximation in the momentum equation, and on transport equations for the turbulent energy and the turbulent energy dissipation. The model describes the mean velocity profile and the turbulent energy distribution as a function of the reduction in the friction coefficient. It also yields a turbulent length scale which is shown to grow with drag reduction. The predictions of the model are in good agreement with the available experimental data.


1976 ◽  
Vol 77 (4) ◽  
pp. 789-823 ◽  
Author(s):  
Peter Mtfller

The interaction between short internal gravity waves and a larger-scale mean flow in the ocean is analysed in the Wkbj approximation. The wave field determines the radiation-stress term in the momentum equation of the mean flow and a similar term in the buoyancy equation. The mean flow affects the propagation characteristics of the wave field. This cross-coupling is treated as a small perturbation. When relaxation effects within the wave field are considered, the mean flow induces a modulation of the wave field which is a linear functional of the spatial gradients of the mean current velocity. The effect that this modulation itself has on the mean flow can be reduced to the addition of diffusion terms to the equations for the mass and momentum balance of the mean flow. However, there is no vertical diffusion of mass and other passive properties. The diffusion coefficients depend on the frequency spectrum and the relaxation time of the internal-wave field and can be evaluated analytically. The vertical viscosity coefficient is found to be vv [ape ] 4 x 103cm2/s and exceeds values typically used in models of the general circulation by at least two orders of magnitude.


2018 ◽  
Vol 859 ◽  
pp. 851-886 ◽  
Author(s):  
John R. Elsnab ◽  
Jason P. Monty ◽  
Christopher M. White ◽  
Manoochehr M. Koochesfahani ◽  
Joseph C. Klewicki

Streamwise velocity profiles and their wall-normal derivatives were used to investigate the properties of turbulent channel flow in the low polymer drag reduction$(DR)$regime ($DR=6.5\,\%$to$26\,\%$), as realized via polymer injection at the channel surface. Streamwise velocity data were obtained over a friction Reynolds number ranging from$650$to$1800$using the single-velocity-component version of molecular tagging velocimetry (1c-MTV). This adaptation of the MTV technique has the ability to accurately capture instantaneous profiles at very high spatial resolution (${\gtrsim}850$data points per wall-normal profile), and thus generate well-resolved derivative information as well. Owing to this ability, the present study is able to build upon and extend the recent numerical simulation analysis of Whiteet al. (J. Fluid Mech., vol. 834, 2018, pp. 409–433) that examined the mean dynamical structure of polymer drag-reduced channel flow at friction Reynolds numbers up to$1000$. Consistently, the present mean velocity profiles indicate that the extent of the logarithmic region diminishes with increasing polymer concentration, while statistically significant increases in the logarithmic profile slope begin to occur for drag reductions less than$15\,\%$. Profiles of the r.m.s. streamwise velocity indicate that the maximum moves farther from the wall and increases in magnitude with reductions in drag. Similarly, with increasing drag reduction, the profile of the combined Reynolds and polymer shear stress exhibits a decrease in its maximum value that also moves farther from the wall. Correlations are presented that estimate the location and value of the maximum r.m.s. streamwise velocity and combined Reynolds and polymer shear stress. Over the range of$DR$investigated, these effects consistently exhibit approximately linear trends as a function of$DR$. The present measurements allow reconstruction of the mean momentum balance (MMB) for channel flow, which provides further insights regarding the physics described in the study by Whiteet al. In particular, the present findings support a physical scenario in which the self-similar properties on the inertial domain identified from the leading-order structure of the MMB begin to detectably and continuously vary for drag reductions less than$10\,\%$.


2018 ◽  
Vol 858 ◽  
pp. 609-633 ◽  
Author(s):  
Juan Carlos Cuevas Bautista ◽  
Alireza Ebadi ◽  
Christopher M. White ◽  
Gregory P. Chini ◽  
Joseph C. Klewicki

Recent studies reveal that at large friction Reynolds number $\unicode[STIX]{x1D6FF}^{+}$ the inertially dominated region of the turbulent boundary layer is composed of large-scale zones of nearly uniform momentum segregated by narrow fissures of concentrated vorticity. Experiments show that, when scaled by the boundary-layer thickness, the fissure thickness is $\mathit{O}(1/\sqrt{\unicode[STIX]{x1D6FF}^{+}})$, while the dimensional jump in streamwise velocity across each fissure scales in proportion to the friction velocity $u_{\unicode[STIX]{x1D70F}}$. A simple model that exploits these essential elements of the turbulent boundary-layer structure at large $\unicode[STIX]{x1D6FF}^{+}$ is developed. First, a master wall-normal profile of streamwise velocity is constructed by placing a discrete number of fissures across the boundary layer. The number of fissures and their wall-normal locations follow scalings informed by analysis of the mean momentum equation. The fissures are then randomly displaced in the wall-normal direction, exchanging momentum as they move, to create an instantaneous velocity profile. This process is repeated to generate ensembles of streamwise velocity profiles from which statistical moments are computed. The modelled statistical profiles are shown to agree remarkably well with those acquired from direct numerical simulations of turbulent channel flow at large $\unicode[STIX]{x1D6FF}^{+}$. In particular, the model robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness and kurtosis profiles over a large range of input parameters.


Sign in / Sign up

Export Citation Format

Share Document