Streamwise and spanwise slip over a superhydrophobic surface

2019 ◽  
Vol 870 ◽  
pp. 1127-1157 ◽  
Author(s):  
Wagih Abu Rowin ◽  
Sina Ghaemi

The near-wall turbulent flow over a superhydrophobic surface (SHS) with random texture was studied using three-dimensional Lagrangian particle tracking velocimetry (3D-PTV). The channel was operated at a constant mass flow rate over the SHS and a smooth surface at a Reynolds number of 7000 based on the bulk velocity of $0.93~\text{m}~\text{s}^{-1}$ and the full channel height. The friction Reynolds number was 217, based on the friction velocity and half channel height. The 3D-PTV processing was based on the shake-the-box algorithm applied to images of fluorescent tracers recorded using four high-speed cameras. The SHS was obtained by spray coating, resulting in a root-mean-square roughness of $0.29\unicode[STIX]{x1D706}$ and an average texture width of $5.0\unicode[STIX]{x1D706}$, where $\unicode[STIX]{x1D706}=17~\unicode[STIX]{x03BC}\text{m}$ is the inner flow scale over the SHS. The 3D-PTV measurements confirmed an isotropic slip with a streamwise slip length of $5.9\unicode[STIX]{x1D706}$ and a spanwise slip length of $5.9\unicode[STIX]{x1D706}$. As a result, both the near-wall mean streamwise and spanwise velocity profiles over the SHS were higher than the smooth surface. The streamwise and spanwise slip velocities over the SHS were $0.27~\text{m}~\text{s}^{-1}$ and $0.018~\text{m}~\text{s}^{-1}$, respectively. The near-wall Reynolds stresses over the SHS were larger and shifted towards the wall when normalized by the corresponding inner scaling, despite the smaller friction Reynolds number of 180 over the SHS. The near-wall measurement of streamwise velocity showed that the shear-free pattern consists of streamwise-elongated regions with a length of $800\unicode[STIX]{x1D706}$ and a spanwise width of $300\unicode[STIX]{x1D706}$. The plastron dimensions correspond to the mean distance of the largest roughness peaks $(20~\unicode[STIX]{x03BC}\text{m})$ obtained from profilometry of the SHS. The drag reduction over the SHS was 30 %–38 % as estimated from pressure measurement and the flow field using the 3D-PTV.

2007 ◽  
Vol 584 ◽  
pp. 281-299 ◽  
Author(s):  
KYOUNGYOUN KIM ◽  
CHANG-F. LI ◽  
R. SURESHKUMAR ◽  
S. BALACHANDAR ◽  
RONALD J. ADRIAN

The effects of polymer stresses on near-wall turbulent structures are examined by using direct numerical simulation of fully developed turbulent channel flows with and without polymer stress. The Reynolds number based on friction velocity and half-channel height is 395, and the stresses created by adding polymer are modelled by a finite extensible nonlinear elastic, dumbbell model. Both low- (18%) and high-drag reduction (61%) cases are investigated. Linear stochastic estimation is employed to compute the conditional averages of the near-wall eddies. The conditionally averaged flow fields for Reynolds-stress-maximizing Q2 events show that the near-wall vortical structures are weakened and elongated in the streamwise direction by polymer stresses in a manner similar to that found by Stone et al. (2004) for low-Reynolds-number quasi-streamwise vortices (‘exact coherent states: ECS’). The conditionally averaged fields for the events with large contribution to the polymer work are also examined. The vortical structures in drag-reduced turbulence are very similar to those for the Q2 events, i.e. counter-rotating streamwise vortices near the wall and hairpin vortices above the buffer layer. The three-dimensional distributions of conditionally averaged polymer force around these vortical structures show that the polymer force components oppose the vortical motion. More fundamentally, the torques due to polymer stress are shown to oppose the rotation of the vortices, thereby accounting for their weakening. The observations also extend concepts of the vortex retardation by viscoelastic counter-torques to the heads of hairpins above the buffer layer, and offer an explanation of the mechanism of drag reduction in the outer region of wall turbulence, as well as in the buffer layer.


2017 ◽  
Vol 826 ◽  
Author(s):  
Christian E. Willert ◽  
Julio Soria ◽  
Michel Stanislas ◽  
Joachim Klinner ◽  
Omid Amili ◽  
...  

This paper reports on near-wall two-component–two-dimensional (2C–2D) particle image velocimetry (PIV) measurements of a turbulent pipe flow at shear Reynolds numbers up to $Re_{\unicode[STIX]{x1D70F}}=40\,000$ acquired in the CICLoPE facility of the University of Bologna. The 111.5 m long pipe of 900 mm diameter offers a well-established turbulent flow with viscous length scales ranging from $85~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=5000$ down to $11~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=40\,000$. These length scales can be resolved with a high-speed PIV camera at image magnification near unity. Statistically converged velocity profiles were determined using multiple sequences of up to 70 000 PIV recordings acquired at sampling rates of 100 Hz up to 10 kHz. Analysis of the velocity statistics shows a well-resolved inner peak of the streamwise velocity fluctuations that grows with increasing Reynolds number and an outer peak that develops and moves away from the inner peak with increasing Reynolds number.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Holger Albiez ◽  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract A new experimental dataset focusing on the influence of high freestream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator, which allows for a continuous variation of turbulence intensity. The flat plate is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 × 105 to 7.5 × 105 and inlet turbulence intensity between 1.1% and 8% is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and freestream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor while freestream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near-wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e., turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.


Author(s):  
Holger Albiez ◽  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract A new experimental dataset focusing on the influence of high free-stream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator which allows for a continuous variation of turbulence intensity. The flat plate features an elliptic nose and is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 · 105 to 7.5 · 105 and inlet turbulence intensity between 1.1 % and 8 % is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and free-stream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor embedded in a steel-belt that is running around the flat plate while free-stream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e. turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.


2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Efe Ünal ◽  
Hojin Ahn ◽  
Esra Sorguven

Flows in a corrugated channel are investigated by a high-speed camera and a particle image velocimetry (PIV) system. The bottom wall of the rectangular channel was corrugated with periodic grooves while the top wall and two sidewalls were flat plates made of Plexiglas. Flow visualization data from the high-speed camera determine the critical Reynolds number to be around 1500 by examining the stability of the vortex in the groove as well as fluid ejection from the groove. The visualization data for turbulent flow also show how a vortex evolves within the groove and triggers another vortex formation in the subsequent groove, and how fluid ejected from the groove triggers another ejection from the subsequent groove. Thus, strong hydrodynamic interactions are observed between successive corrugations. In addition, PIV data provide the profiles of velocities and Reynolds stresses as a function of Reynolds number. Time-averaged streamlines show that a large, stable vortex exists in the groove for laminar flow. On the other hand, for turbulent flow, the vortex is unstable inside the groove, often prompting fluid ejection which interacts with the bulk flow. Especially the Reynolds stress of the square of velocity fluctuation in the direction normal to the bulk flow significantly increases as the fluid ejection from the groove intensifies with increasing Reynolds number.


2007 ◽  
Vol 579 ◽  
pp. 1-28 ◽  
Author(s):  
N. HUTCHINS ◽  
IVAN MARUSIC

A regime of very long meandering positive and negative streamwise velocity fluctuations, that we term ‘superstructures’, are found to exist in the log and lower wake regions of turbulent boundary layers. Measurements are made with a spanwise rake of 10 hot-wires in two separate facilities (spanning more than a decade of Reτ) and are compared with existing PIV and DNS results. In all cases, we note evidence of a large-scale stripiness in the streamwise velocity fluctuations. The length of these regions can commonly exceed 20δ. Similar length scales have been previously reported for pipes and DNS channel flows. It is suggested that the true length of these features is masked from single-point statistics (such as autocorrelations and spectra) by a spanwise meandering tendency. Support for this conjecture is offered through the study of a synthetic flow composed only of sinusoidally meandering elongated low- and high-speed regions. From detailed maps of one-dimensional spectra, it is found that the contribution to the streamwise turbulence intensities associated with the superstructures appears to be increasingly significant with Reynolds number, and scales with outer length variables (δ). Importantly, the superstructure maintains a presence or footprint in the near-wall region, seeming to modulate or influence the near-wall cycle. This input of low-wavenumber outer-scaled energy into the near-wall region is consistent with the rise in near-wall streamwise intensities, when scaled with inner variables, that has been noted to occur with increasing Reynolds number. In an attempt to investigate these structures at very high Reynolds numbers, we also report on recent large-scale sonic anemometer rake measurements, made in the neutrally stable atmospheric surface layer. Preliminary results indicate that the superstructure is present in the log region of this atmospheric flow at Reτ = 6.6×105, and has a size consistent with outer scaling.


Author(s):  
А.С. Лобасов ◽  
А.В. Минаков

The results of numerical investigation of the hydrodynamic drag of a slit microchannel with a textured wall surface, as well as the pressure drop in such a channel and the effective slip length on the wall for various Reynolds numbers, are presented. The channel height was 10 µm, and the length varied from 25 to 500 µm. It was found that the pressure drop in the textured microchannel was less than in a conventional channel for any of its lengths. The dependences of the relative pressure drop, the friction factor, and the effective slip length on the Reynolds number were obtained for various channel lengths. A correlation that describes the dependence of the relative pressure drop on the Reynolds number for small channel lengths was proposed. The friction factor is described by a correlation of form 20 / Re.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012050
Author(s):  
A S Lobasov ◽  
A V Minakov

Abstract The numerical investigation of the fluid flow in a slit microchannel with a textured wall was carried out. The effect of the channel height on the hydrodynamic drag coefficient, as well as on the pressure drop in such channel and the effective slip length on the wall for various Reynolds numbers, are presented in the paper. The channel length was 100 µm, and its height was varied from 25 µm to 500 µm. The Reynolds number was varied from 0.1 to 100. The main studied characteristics were compared to the similar ones obtained for a channel with normal walls (no-slip conditions). It was found that the pressure drop in such textured microchannel was lower as compared to a conventional channel for any of its heights and for any Reynolds numbers. The dependences of the relative pressure drop, effective slip length, and drag coefficient on the Reynolds number were obtained for different channel heights. The drag coefficient was described as 20/Re for the average values of the channel height. A correlation that describes the dependence of the friction factor on the Reynolds number for small and large heights of the channel was proposed. The accuracy of the proposed correlation was about 90%.


2019 ◽  
Vol 873 ◽  
pp. 977-1019 ◽  
Author(s):  
Karim Alamé ◽  
Krishnan Mahesh

Direct numerical simulation (DNS) is performed for two wall-bounded flow configurations: laminar Couette flow at $Re=740$ and turbulent channel flow at $Re_{\unicode[STIX]{x1D70F}}=180$, where $\unicode[STIX]{x1D70F}$ is the shear stress at the wall. The top wall is smooth and the bottom wall is a realistically rough superhydrophobic surface (SHS), generated from a three-dimensional surface profile measurement. The air–water interface, which is assumed to be flat, is simulated using the volume-of-fluid (VOF) approach. The two flow cases are studied with varying interface heights $h$ to understand its effect on slip and drag reduction ($DR$). For the laminar Couette flow case, the presence of the surface roughness is felt up to $40\,\%$ of the channel height in the wall-normal direction. Nonlinear dependence of $DR$ on $h$ is observed with three distinct regions. A nonlinear curve fit is obtained for gas fraction $\unicode[STIX]{x1D719}_{g}$ as a function of $h$, where $\unicode[STIX]{x1D719}_{g}$ determines the amount of slip area exposed to the flow. A power law fit is obtained from the data for the effective slip length as a function of $\unicode[STIX]{x1D719}_{g}$ and is compared to those derived for structured geometry. For the turbulent channel flow, statistics of the flow field are compared to that of a smooth wall to understand the effects of roughness and $h$. Four cases are simulated ranging from fully wetted to fully covered and two intermediate regions in between. Scaling laws for slip length, slip velocity, roughness function and $DR$ are obtained for different penetration depths and are compared to past work for structured geometry. $DR$ is shown to depend on a competing effect between slip velocity and turbulent losses due to the Reynolds shear stress contribution. Presence of trapped air in the cavities significantly alters near-wall flow physics where we examine near-wall structures and propose a physical mechanism for their behaviour. The fully wetted roughness increases the peak value of turbulent intensities, whereas the presence of the interface suppresses them. The pressure fluctuations have competing contributions between turbulent pressure fluctuations and stagnation due to asperities, the near-wall structure is altered and breaks down with increasing slip. Overall, there exists a competing effect between the interface and the asperities, the interface suppresses turbulence whereas the asperities enhance them. The present work demonstrates DNS over a realistic multiphase SHS for the first time, to the best of our knowledge.


Sign in / Sign up

Export Citation Format

Share Document