Swimming in Crustacea

Author(s):  
Robert R. Hessler

ABSTRACTAn analysis of swimming in living crustaceans is presented in order to elucidate the range of ways this function has been achieved, and to reveal the principles which constrain it. The study focuses on Gnathophausia ingens, a primitive, bathypelagic malacostracan that swims with thoracic exopods and pleopods. These structures consist of a muscular peduncle and one or two flagella that are fringed with setulate setae. The basic motion is rowing with the limb and setal fan extended on the power stroke and flexed on recovery.A survey of other crustaceans shows that rowing with this type of swimming structure dominates throughout, although paddles often replace the flagella. Particularly pervasive is the large relative area of setae, whose effectiveness must stem from the ability to extend and flex passively and from the high drag generated on the power stroke by the setules at low Reynolds numbers.A review of reconstructions of Palaeozoic trilobites and marrellomorphs reveals the likelihood that if swimming was the function of the exites, they operated inefficiently or were employed in other methods as well. Sculling and drag reduction on the recovery stroke through feathering rather than flexion are possible alternatives. The more common occurrence of paddle-like limb shafts and blade-like marginal structures in other Palaeozoic arthropods is also noted.

2019 ◽  
Vol 874 ◽  
pp. 699-719 ◽  
Author(s):  
Jose M. Lopez ◽  
George H. Choueiri ◽  
Björn Hof

Polymer additives can substantially reduce the drag of turbulent flows and the upper limit, the so-called state of ‘maximum drag reduction’ (MDR), is to a good approximation independent of the type of polymer and solvent used. Until recently, the consensus was that, in this limit, flows are in a marginal state where only a minimal level of turbulence activity persists. Observations in direct numerical simulations at low Reynolds numbers ($Re$) using minimal sized channels appeared to support this view and reported long ‘hibernation’ periods where turbulence is marginalized. In simulations of pipe flow at $Re$ near transition we find that, indeed, with increasing Weissenberg number ($Wi$), turbulence expresses long periods of hibernation if the domain size is small. However, with increasing pipe length, the temporal hibernation continuously alters to spatio-temporal intermittency and here the flow consists of turbulent puffs surrounded by laminar flow. Moreover, upon an increase in $Wi$, the flow fully relaminarizes, in agreement with recent experiments. At even larger $Wi$, a different instability is encountered causing a drag increase towards MDR. Our findings hence link earlier minimal flow unit simulations with recent experiments and confirm that the addition of polymers initially suppresses Newtonian turbulence and leads to a reverse transition. The MDR state on the other hand results at these low$Re$ from a separate instability and the underlying dynamics corresponds to the recently proposed state of elasto-inertial turbulence.


Author(s):  
O. Mochizuki

We investigated the relations between swimming motions and flow fields around plankton that is a larva of brine-shrimp (Artemia salina) and jellyfish (Aurelia aurita). These move in low Reynolds numbers by flapping motion in common. We recorded motions and flow by using a high speed CCD camera, and analyzed by a motion analysis and PIV method. We observed vortex pairs in each case as a result of power stroke and recovery stroke of pitching motion. Force acting on the body was estimated by measured acceleration of the body. Mechanism of generation of thrust force related to vortex pairs by flapping motion in low Reynolds number environment was discussed in this paper.


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2004 ◽  
Author(s):  
Andrew D. Ketsdever ◽  
Michael T. Clabough ◽  
Sergey F. Gimelshein ◽  
Alina Alexeenko

2020 ◽  
Vol 32 (11) ◽  
pp. 119901
Author(s):  
Cathal Cummins ◽  
Ignazio Maria Viola ◽  
Enrico Mastropaolo ◽  
Naomi Nakayama

Sign in / Sign up

Export Citation Format

Share Document