Tunable diffusion in wave-driven two-dimensional turbulence

2019 ◽  
Vol 865 ◽  
pp. 811-830 ◽  
Author(s):  
H. Xia ◽  
N. Francois ◽  
H. Punzmann ◽  
M. Shats

We report an abrupt change in the diffusive transport of inertial objects in wave-driven turbulence as a function of the object size. In these non-equilibrium two-dimensional flows, the turbulent diffusion coefficient $D$ of finite-size objects undergoes a sharp change for values of the object size $r_{p}$ close to the flow forcing scale $L_{f}$. For objects larger than the forcing scale ($r_{p}>L_{f}$), the diffusion coefficient is proportional to the flow energy $U^{2}$ and inversely proportional to the size $r_{p}$. This behaviour, $D\sim U^{2}/r_{p}$ , observed in a chaotic macroscopic system is reminiscent of a fluctuation–dissipation relation. In contrast, the diffusion coefficient of smaller objects ($r_{p}<L_{f}$) follows $D\sim U/r_{p}^{0.35}$. This result does not allow simple analogies to be drawn but instead it reflects strong coupling of the small objects with the fabric and memory of the out-of-equilibrium flow. In these turbulent flows, the flow structure is dominated by transient but long-living bundles of fluid particle trajectories executing random walk. The characteristic widths of the bundles are close to $L_{f}$. We propose a simple phenomenology in which large objects interact with many bundles. This interaction with many degrees of freedom is the source of the fluctuation–dissipation-like relation. In contrast, smaller objects are advected within coherent bundles, resulting in diffusion properties closely related to those of fluid tracers.

1981 ◽  
Vol 64 (10) ◽  
pp. 1-8
Author(s):  
Tsuyoshi Matsuo ◽  
Yasumichi Hasegawa ◽  
Yoshikuni Okada

2004 ◽  
Vol 15 (10) ◽  
pp. 1425-1438 ◽  
Author(s):  
A. SOLAK ◽  
B. KUTLU

The two-dimensional BEG model with nearest neighbor bilinear and positive biquadratic interaction is simulated on a cellular automaton, which is based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transitions of the model are presented for comparison with those obtained from other calculations. We confirm the existence of the tricritical points over the phase boundary for D/K>0. The values of static critical exponents (α, β, γ and ν) are estimated within the framework of the finite size scaling theory along D/K=-1 and 1 lines. The results are compatible with the universal Ising critical behavior except the points over phase boundary.


2004 ◽  
Author(s):  
Laurence Le Floc'h ◽  
Veronique Quintard ◽  
Jean-Francois Favennec ◽  
Yann G. Boucher

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.


2011 ◽  
Vol 21 (03) ◽  
pp. 421-457 ◽  
Author(s):  
RAPHAËL DANCHIN ◽  
MARIUS PAICU

Models with a vanishing anisotropic viscosity in the vertical direction are of relevance for the study of turbulent flows in geophysics. This motivates us to study the two-dimensional Boussinesq system with horizontal viscosity in only one equation. In this paper, we focus on the global existence issue for possibly large initial data. We first examine the case where the Navier–Stokes equation with no vertical viscosity is coupled with a transport equation. Second, we consider a coupling between the classical two-dimensional incompressible Euler equation and a transport–diffusion equation with diffusion in the horizontal direction only. For both systems, we construct global weak solutions à la Leray and strong unique solutions for more regular data. Our results rest on the fact that the diffusion acts perpendicularly to the buoyancy force.


1993 ◽  
Vol 69 (3) ◽  
pp. 965-979 ◽  
Author(s):  
K. Hepp ◽  
A. J. Van Opstal ◽  
D. Straumann ◽  
B. J. Hess ◽  
V. Henn

1. Although the eye has three rotational degrees of freedom, eye positions, during fixations, saccades, and smooth pursuit, with the head stationary and upright, are constrained to a plane by ListingR's law. We investigated whether Listing's law for rapid eye movements is implemented at the level of the deeper layers of the superior colliculus (SC). 2. In three alert rhesus monkeys we tested whether the saccadic motor map of the SC is two dimensional, representing oculocentric target vectors (the vector or V-model), or three dimensional, representing the coordinates of the rotation of the eye from initial to final position (the quaternion or Q-model). 3. Monkeys made spontaneous saccadic eye movements both in the light and in the dark. They were also rotated about various axes to evoke quick phases of vestibular nystagmus, which have three degrees of freedom. Eye positions were measured in three dimensions with the magnetic search coil technique. 4. While the monkey made spontaneous eye movements, we electrically stimulated the deeper layers of the SC and elicited saccades from a wide range of initial positions. According to the Q-model, the torsional component of eye position after stimulation should be uniquely related to saccade onset position. However, stimulation at 110 sites induced no eye torsion, in line with the prediction of the V-model. 5. Activity of saccade-related burst neurons in the deeper layers of the SC was analyzed during rapid eye movements in three dimensions. No systematic eye-position dependence of the movement fields, as predicted by the Q-model, could be detected for these cells. Instead, the data fitted closely the predictions made by the V-model. 6. In two monkeys, both SC were reversibly inactivated by symmetrical bilateral injections of muscimol. The frequency of spontaneous saccades in the light decreased dramatically. Although the remaining spontaneous saccades were slow, Listing's law was still obeyed, both during fixations and saccadic gaze shifts. In the dark, vestibularly elicited fast phases of nystagmus could still be generated in three dimensions. Although the fastest quick phases of horizontal and vertical nystagmus were slower by about a factor of 1.5, those of torsional quick phases were unaffected. 7. On the basis of the electrical stimulation data and the properties revealed by the movement field analysis, we conclude that the collicular motor map is two dimensional. The reversible inactivation results suggest that the SC is not the site where three-dimensional fast phases of vestibular nystagmus are generated.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 321 ◽  
Author(s):  
M. Li ◽  
W. L. Johnson ◽  
W. A. Goddard

ABSTRACTThermodynamic properties, structures, defects and their configurations of a two-dimensional Lennard-Jones (LJ) system are investigated close to crystal to glass transition (CGT) via molecular dynamics simulations. The CGT is achieved by saturating the LJ binary arrays below glass transition temperature with one type of the atoms which has different atomic size from that of the host atoms. It was found that for a given atomic size difference larger than a critical value, the CGT proceeds with increasing solute concentrations in three stages, each of which is characterized by distinct behaviors of translational and bond-orientational order correlation functions. An intermediate phase which has a quasi-long range orientational order but short range translational order has been found to exist prior to the formation of the amorphous phase. The destabilization of crystallinity is observed to be directly related to defects. We examine these results in the context of two dimensional (2D) melting theory. Finite size effects on these results, in particular on the intermediate phase formation, are discussed.


Sign in / Sign up

Export Citation Format

Share Document