Curved surface effect on high-speed droplet impingement

2020 ◽  
Vol 909 ◽  
Author(s):  
Wangxia Wu ◽  
Qingquan Liu ◽  
Bing Wang

Abstract

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Hirotoshi Sasaki ◽  
Yuka Iga

This study explains why the deep erosion pits are formed in liquid droplet impingement erosion even though the droplets uniformly impinge on the entire material surface. Liquid droplet impingement erosion occurs in fluid machinery on which droplets impinge at high speed. In the process of erosion, the material surface becomes completely roughened by erosion pits. In addition, most material surface is not completely smooth and has some degree of initial roughness from manufacturing and processing and so on. In this study, to consider the influence of the roughness on the material surface under droplet impingement, a numerical analysis of droplets impinging on the material surface with a single wedge and a single bump was conducted with changing offsets between the droplet impingement centers and the roughness centers on each a wedge bottom and a bump top. As results, two mechanisms are predicted from the present numerical results: the erosion rate accelerates and transitions from the incubation stage to the acceleration stage once roughness occurs on the material surface; the other is that deep erosion pits are formed even in the case of liquid droplets impinging uniformly on the entire material surface.


2003 ◽  
Vol 40 (01) ◽  
pp. 42-48
Author(s):  
Chang Doo Jang ◽  
Ho Kyung Kim ◽  
Ha Cheol Song

A surface effect ship is known to be comparable to a high-speed ship. For the structural design of surface effect ships, advanced design methods are needed which can reflect the various loading conditions different from those of conventional ships. Also, minimum weight design is essential because hull weight significantly affects the lift, thrust powering and high-speed performance. This paper presents the procedure of optimum structural design and a computer program to minimize the hull weight of surface effect ships built of composite materials. By using the developed computer program, the optimum structural designs for three types of surface effect ships—built of sandwich plate only, stiffened single skin plate only, and both plates—are carried out and the efficiency of each type is investigated in terms of weight. The computer program, developed herein, successfully reduced the hull weight of surface effect ships by 15–30% compared with the original design. Numerical results of optimum structural designs are presented and discussed.


2009 ◽  
Vol 53 (03) ◽  
pp. 137-150
Author(s):  
Francis Noblesse ◽  
Gérard Delhommeau ◽  
Chi Yang

The linearized potential flow resulting from a distribution of pressure that advances at constant speed along a straight path at the free surface of calm water, of effectively infinite depth and lateral extent, is considered. A practical method for evaluating the free-surface elevation caused by the moving free-surface pressure patch—which can be used to model steady flows of air-cushion vehicles, high-speed planing boats, surface-effect ships, and some types of hybrid ships—is given. The key ingredient of this method is a highly simplified analytical approximation to the local-flow component in the expression for the Green function associated with the classic Michell-Kelvin linearized free-surface boundary condition.


1975 ◽  
Vol 12 (03) ◽  
pp. 254-259
Author(s):  
W. F. Perkins

These notes are prepared to highlight some of the points in a review of progress in the development of oceangoing surface effect ships over the past ten years. In 1965, considerable interest was generated with respect to the application of large—more than 4000-tons—SES in ocean commerce. Since that time, considerable effort has been devoted to addressing the technical design problems associated with such ships. Emphasis has shifted in the near term to a military ship of about 2000-tons gross weight. Nonetheless, many of the design solutions to technical problems at the 2000-ton size are applicable to any large, high-speed SES. Thus, progress and success in the Navy programs can lead eventually to commercial application of SES.


1981 ◽  
Vol 25 (01) ◽  
pp. 44-61
Author(s):  
C. H. Kim ◽  
S. Tsakonas

The analysis presents a practical method for evaluating the added-mass and damping coefficients of a heaving surface-effect ship in uniform translation. The theoretical added-mass and damping coefficients and the heave response show fair agreement with the corresponding experimental values. Comparisons of the coupled aero-hydrodynamic and uncoupled analytical results with the experimental data prove that the uncoupled theory, dominant for a long time, that neglects the free-surface effects is an oversimplified procedure. The analysis also provides means of estimating the wave elevation of the free surface, the escape area at the stern and the volume which are induced by a heaving surface-effect ship in uniform translation in otherwise calm water. Computational procedures have been programmed in the FORTRAN IV language and adapted to the PDP-10 high-speed digital computer.


Author(s):  
Yoichiro Fukuchi ◽  
Tomoki Kondo ◽  
Keita Ando

Abstract In semiconductor industry, liquid jet cleaning plays an important role because of its high cleaning efficiency and low environmental load. However, its cleaning mechanism is not revealed in detail because the experimental observation of high-speed and sub-micron droplets is challenging. Furthermore, higher impact velocity may give rise to surface erosion due to water-hammer shock loading from the impingement. To study cleaning mechanisms and surface erosion, numerical simulation of droplet impingement accounting for both viscosity and compressibility is an effective approach. In the previous study, wall-shear-flow generation has evaluated from the simulation of high-speed single droplet impingement. To evaluate more practical model of jet cleaning application, simulation of two droplets simplifying mono-dispersed splay of droplet train is favorable. Here, we numerically simulated impingement of two droplets, which allows for evaluating water-hammer pressure and wall shear stress. We consider the case of two water droplets (200 μm in diameter) that collides continuously, at speed 50 m/s, at the inter-droplet distance from 250 to 400 μm, with a no-slip rigid wall covered with a water layer (100 μm in thickness). The simulation is based on compressible Navier-Stokes equations for axisymmetric flow and the mixture of two components appears in numerically diffusion interface expressed by the volume average and advection equation. The simulation is solved by finite-volume WENO scheme that can capture both shock waves and material interface. In our simulation, the impingement of second droplet impingement gain higher shear stress than the single droplet impingement. At the case that the inter-droplet distance is 300 μm, maximum shear stress is 30.22 kPa (at the second droplet impingement), which is much larger than at the first droplet impingement (8.42 kPa). This result indicates how the second droplet impingement make wall shear flow induced by first droplet impingement stronger. From the parameter study of the inter-droplet distance, we can say that wall shear stress gets stronger as water layer thickness decreases. Furthermore, the maximum wall pressure is 1.96 MPa at the second droplet impingement, which is larger than at the first droplet impingement (1.46 MPa). From this study, the evaluation of surface erosion caused by jet cleaning is expected. The simulation suggests that multiple droplets impingement continuously may gain higher cleaning efficiency, which will give us a fundamental insight into liquid jet cleaning technologies. For further study, simulation of water column impingement and comparing the result of impingement of two droplets are expected.


2020 ◽  
Vol 63 (5) ◽  
pp. 1349-1360
Author(s):  
Pan Xue ◽  
Yujun Hao ◽  
Wan Jiao ◽  
Jie Ren ◽  
Feifei Yang ◽  
...  

HighlightsThe instability of the seed release point in a seed-metering device is proved theoretically.A double-curved guiding groove at the seed-release point improves the seed-metering uniformity.A discrete element model was used to examine effects of the design parameters on the metering performance.The critical parameters for the double-curved guiding groove design were determined.Abstract. The instability of the seed release point in a seed-metering device is one of the main causes of the non-uniformity of seed spacing. To improve the seed spacing uniformity, a double-curved guiding groove (DGG) was designed based on the prerelease adaptive principle. The DGG was used at the seed release point of an existing high-speed precision soybean seed-metering device with a double-setting plate. The results showed that the prerelease curved surface of the DGG was capable of guiding seeds to be released at the same seed release point at all times, and the adaptive curved surface of the DGG prevented any changes in seed velocity caused by friction or collisions between seeds and the meter, thereby improving the seed spacing uniformity significantly. A discrete element model was developed and validated with laboratory tests. Through simulations using the model, the primary and secondary factors of the DGG impacting the qualified rate of seed metering (QRM) and the coefficient of variation of the seed spacing uniformity (CVU) were identified and were, in descending order, the spacing of prerelease (SPR), the starting position of prerelease (SPP), the inclination angle of the seed outlet (ASO), and the inclination angle of the receiving cup (ABR). Regression equations of the QRM and CVU with the two main impacting factors were then established. For a planter travel speed of 10 km h-1, the optimal SPR was 10 mm, and the optimal SPP was 40°, where the QRM was 100% and the CVU was 16.61%. When compared to seed metering without the DGG, the CVU was reduced by 2.55%, showing that the DGG significantly improved the uniformity of seed spacing. Keywords: Double-curved guiding groove, Discrete element method, Seed-metering device, Travel speed, Uniformity.


Sign in / Sign up

Export Citation Format

Share Document