Stably stratified square cavity subjected to horizontal oscillations: responses to small amplitude forcing

2021 ◽  
Vol 915 ◽  
Author(s):  
Hezekiah Grayer II ◽  
Jason Yalim ◽  
Bruno D. Welfert ◽  
Juan M. Lopez

Abstract

1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.


1968 ◽  
Vol 11 (1) ◽  
pp. 63-76
Author(s):  
Donald C. Teas ◽  
Gretchen B. Henry

The distributions of instantaneous voltage amplitudes in the cochlear microphonic response recorded from a small segment along the basilar membrane are described by computing amplitude histograms. Comparisons are made between the distributions for noise and for those after the addition to the noise of successively stronger sinusoids. The amplitudes of the cochlear microphonic response to 5000 Hz low-pass noise are normally distributed in both Turn I and Turn III of the guinea pig’s cochlea. The spectral composition of the microphonic from Turn I and from Turn III resembles the output of band-pass filters set at about 4000 Hz, and about 500 Hz, respectively. The normal distribution of cochlear microphonic amplitudes for noise is systematically altered by increasing the strength of the added sinusoid. A decrease of three percent in the number of small amplitude events (±1 standard deviation) in the cochlear microphonic from Turn III is seen when the rms voltage of a 500 Hz sinusoid is at −18 dB re the rms voltage of the noise (at the earphone). When the rms of the sinusoid and noise are equal, the decrease in small voltages is about 25%, but there is also an increase in the number of large voltage amplitudes. Histograms were also computed for the output of an electronic filter with a pass-band similar to Turn III of the cochlea. Strong 500 Hz sinusoids showed a greater proportion of large amplitudes in the filter output than in CM III . The data are interpreted in terms of an anatomical substrate.


2020 ◽  
Vol 14 (3) ◽  
pp. 7269-7281
Author(s):  
El Amin Azzouz ◽  
Samir Houat

The two-dimensional asymmetrical flow in a two-sided lid-driven square cavity is numerically analyzed by the finite volume method (FVM). The top and bottom walls slide in parallel and antiparallel motions with various velocity ratio (UT/Ub=λ) where |λ|=2, 4, 8, and 10. In this study, the Reynolds number Re1 = 200, 400, 800 and 1000 is applied for the upper side and Re2 = 100 constant on the lower side. The numerical results are presented in terms of streamlines, vorticity contours and velocity profiles. These results reveal the effect of varying the velocity ratio and consequently the Reynolds ratio on the flow behaviour and fluid characteristics inside the cavity. Unlike conventional symmetrical driven flows, asymmetrical flow patterns and velocity distributions distinct the bulk of the cavity with the rising Reynolds ratio. For λ>2, in addition to the main vortex, the parallel motion of the walls induces two secondary vortices near the bottom cavity corners. however, the antiparallel motion generates two secondary vortices on the bottom right corner. The parallel flow proves affected considerably compared to the antiparallel flow.


Sign in / Sign up

Export Citation Format

Share Document