scholarly journals Rheology of mobile sediment beds in laminar shear flow: effects of creep and polydispersity

2021 ◽  
Vol 932 ◽  
Author(s):  
Christoph Rettinger ◽  
Sebastian Eibl ◽  
Ulrich Rüde ◽  
Bernhard Vowinckel

Classical scaling relationships for rheological quantities such as the $\mu (J)$ -rheology have become increasingly popular for closures of two-phase flow modelling. However, these frameworks have been derived for monodisperse particles. We aim to extend these considerations to sediment transport modelling by using a more realistic sediment composition. We investigate the rheological behaviour of sheared sediment beds composed of polydisperse spherical particles in a laminar Couette-type shear flow. The sediment beds consist of particles with a diameter size ratio of up to 10, which corresponds to grains ranging from fine to coarse sand. The data was generated using fully coupled, grain resolved direct numerical simulations using a combined lattice Boltzmann–discrete element method. These highly resolved data yield detailed depth-resolved profiles of the relevant physical quantities that determine the rheology, i.e. the local shear rate of the fluid, particle volume fraction, total shear and granular pressure. A comparison against experimental data shows excellent agreement for the monodisperse case. We improve upon the parameterization of the $\mu (J)$ -rheology by expressing its empirically derived parameters as a function of the maximum particle volume fraction. Furthermore, we extend these considerations by exploring the creeping regime for viscous numbers much lower than used by previous studies to calibrate these correlations. Considering the low viscous numbers of our data, we found that the friction coefficient governing the quasi-static state in the creeping regime tends to a finite value for vanishing shear, which decreases the critical friction coefficient by a factor of three for all cases investigated.

Author(s):  
J. M. Truby ◽  
S. P. Mueller ◽  
E. W. Llewellin ◽  
H. M. Mader

We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction ( 0 ≤ ϕ p ≲ 0.5 ) and bubble volume fraction ( 0 ≤ ϕ b ≲ 0.3 ). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases.


2021 ◽  
Author(s):  
Bertrand Rollin ◽  
Frederick Ouellet ◽  
Bradford Durant ◽  
Rahul Babu Koneru ◽  
S. Balachandar

Abstract We study the interaction of a planar air shock with a perturbed, monodispersed, particle curtain using point-particle simulations. In this Eulerian-Lagrangian approach, equations of motion are solved to track the position, momentum, and energy of the computational particles while the carrier fluid flow is computed in the Eulerian frame of reference. In contrast with many Shock-Driven Multiphase Instability (SDMI) studies, we investigate a configuration with an initially high particle volume fraction, which produces a strongly two-way coupled flow in the early moments following the shock-solid phase interaction. In the present study, the curtain is about 4 mm in thickness and has a peak volume fraction of about 26%. It is composed of spherical particles of d = 115μm in diameter and a density of 2500 kg.m−3, thus replicating glass particles commonly used in multiphase shock tube experiments or multiphase explosive experiments. We characterize both the evolution of the perturbed particle curtain and the gas initially trapped inside the particle curtain in our planar three-dimensional numerical shock tube. Control parameters such as the shock strength, the particle curtain perturbation wavelength and particle volume fraction peak-to-trough amplitude are varied to quantify their influence on the evolution of the particle cloud and the initially trapped gas. We also analyze the vortical motion in the flow field. Our results indicate that the shock strength is the primary contributor to the cloud particle width. Also, a classic Richtmyer-Meshkov instability mixes the gas initially trapped in the particle curtain and the surrounding gas. Finally, we observe that the particle cloud contribute to the formation of longitudinal vortices in the downstream flow.


2018 ◽  
Vol 19 (4) ◽  
pp. 401 ◽  
Author(s):  
Ahmed Zeeshan ◽  
Nouman Ijaz ◽  
Muhammad Mubashir Bhatti

This article addresses the influence of particulate-fluid suspension on asymmetric peristaltic motion through a curved configuration with mass and heat transfer. A motivation for the current study is that such kind of theory is helpful to examine the two-phase peristaltic motion between small muscles during the propagation of different biological fluids. Moreover, it is also essential in multiple applications of pumping fluid-solid mixtures by peristalsis, i.e., Chyme in small intestine and suspension of blood in arteriole. Long wavelength, as well as small Reynolds number, have been utilized to render the governing equations for particle and fluid phase. Exact solutions are presented for velocity (uf,p), temperature (θf,p) and concentration distributions (φf,p). All the parameters such as Prandtl number (Pr), particle volume fraction (C), suspension parameter (M1), curvature parameter (k), volumetric flow rate (Q), Schmidt number (Sc), phase difference (φ), Eckert number (Ec), and Soret number (Sr) discussed graphically for peristaltic pumping (Δp), pressure gradient (dp/dx), velocity (uf,p), temperature (θf,p) and concentration distributions (φf,p). The streamlines are also plotted with the aid of contour.


2011 ◽  
Vol 474-476 ◽  
pp. 7-10 ◽  
Author(s):  
Zhuo Chen ◽  
Zhi Xiong Huang ◽  
Ming Zhang ◽  
Min Xian Shi ◽  
Yan Qin ◽  
...  

This paper introduced a computer simulation model for composite materials which was reinforced by spherical particles. We introduced its algorithm and visualize the model with different particle volume fraction. In order to evaluate the uniformity of the particle distribution, we estimated Particle Center Density and standard deviation of minimal sphere distance.


Author(s):  
Hisanori Yagami ◽  
Tomomi Uchiyama

The behavior of small solid particles falling in an unbounded air is simulated. The particles, initially arranged within a spherical region in a quiescent air, are made to fall, and their fall induces the air flow around them, resulting in the gas-particle two-phase flow. The particle diameter and density are 1 mm and 7.7 kg/m3 respectively. A three-dimensional vortex method proposed by one of the authors is applied. The simulation demonstrates that the particles are accelerated by the induced downward air flow just after the commencement of their fall. It also highlights that the particles are whirled up by a vortex ring produced around the downward air flow after the acceleration. The effect of the particle volume fraction at the commencement of the fall is also explored.


2019 ◽  
Vol 962 ◽  
pp. 210-217
Author(s):  
Yong Ming Guo ◽  
Nozomi Fukae

It is well known that the properties of materials are a function of their microstructural parameters. The FEM is a good selection for studies of three-dimensional microstructure-property relationships. In this research, the elastic-plastic micromechanical response of the particle volume fraction of two-phase materials have been calculated using a commercial software package of the FEM, some new knowledges on the microstructure-property relationships have obtained.


1996 ◽  
Vol 118 (3) ◽  
pp. 287-294 ◽  
Author(s):  
R. Ditchfield ◽  
W. L. Olbricht

Experimental results are reported for the low Reynolds number flow of a suspension of spherical particles through a divergent capillary bifurcation consisting of a straight tube of circular cross-section that splits to form two tubes of equal diameter. The partitioning of particles between the downstream branches of the bifurcation is measured as a function of the partitioning of total volume (particles + suspending fluid) between the branches. Two bifurcation geometries are examined: a symmetric Y-shaped bifurcation and a nonsymmetric T-shaped bifurcation. This experiment focuses on the role of hydrodynamic interactions between particles on the partitioning of particles at the bifurcation. The particle diameter, made dimensionless with respect to the diameter of the branch tubes, ranges from 0.4 to 0.8. Results show that hydrodynamic interactions among the particles are significant at the bifurcation, even for conditions where interactions are unimportant in the straight branches away from the bifurcation. As a result of hydrodynamic interactions among particles at the bifurcation, the partitioning of particles between the branches is affected for particle volume fractions as small as 2 percent. The experimental results show that the effect of particle volume fraction is to diminish the inhomogeneity of particle partitioning at the bifurcation. However, the magnitude of this effect depends strongly on the overall shape of the bifurcation geometry, and, in particular on the angles between the branches.


1986 ◽  
Vol 108 (3) ◽  
pp. 608-613 ◽  
Author(s):  
J. D. Cartigny ◽  
Y. Yamada ◽  
C. L. Tien

Dependent radiation scattering for which the independent scattering theory fails to predict the scattering properties is important in analyzing radiative transfer in packed and fluidized beds. In this paper the dependent scattering properties have been derived assuming the Rayleigh–Debye scattering approximation for two cases: two identical spheres and a cloud of spherical particles. The two-sphere calculated results compare well with the exact solutions in the literature, giving confidence in the present analytical approach. The gas model and packed-sphere model have been employed to calculate dependent scattering properties for a cloud of particles of small and large particle volume fraction, respectively. The calculated dependent scattering efficiencies for a cloud of particles are smaller than the independent scattering efficiencies and decrease with increasing particle volume fraction. A regime map for independent and dependent scattering has been constructed and compared with existing empirical criteria.


2012 ◽  
Vol 499 ◽  
pp. 271-276 ◽  
Author(s):  
Shi Ming Ji ◽  
J.Q. Zhong ◽  
Da Peng Tan ◽  
Y.W. Chi

Because of the liquid phase’s driving action, particles would be collided the surface and impacted with each other in the flow passage, the surface will be machined though the continuous action of impact force and friction force. The finishing results of structural surface is related to the collision frequency and the pressure, abrasion situation in different area of the structural surface can be analyzed obviously by investigating dynamic characteristic and distribution of particle group. Based on coupled wave theory of liquid-solid two phases flow, using mixture model which belongs to Euler-Euler multiphase flow model and realizable turbulence model, turbulence effects of liquid-solid two-phase flow in the wall is numerical simulated and some parameters such as turbulent velocity and turbulent energy are calculated with different particles concentration in the flow passage which has V-shaped texture and semicircular cross-section. The simulation results show that the disorder degree of turbulence can be improved by assembling V-shaped constrained component, because V-shaped passage is benefit of eddy current’s generation. As the concentration of particles being enhanced, the velocity of particle would be increased in a certain range, turbulence energy reduces gradually, fluctuation margin of particle volume fraction is smaller and smaller, and curves of every kind of parameters change as continuous oscillation, area of surface corresponded with crest of the curve. The concentration of particles should be selected properly and different particles distribution and finishing performance would be obtained with different particles concentration.


Sign in / Sign up

Export Citation Format

Share Document