scholarly journals Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer

2021 ◽  
Vol 929 ◽  
Author(s):  
Dehao Xu ◽  
Jianchun Wang ◽  
Minping Wan ◽  
Changping Yu ◽  
Xinliang Li ◽  
...  

The effect of wall temperature on the transfer of kinetic energy in a hypersonic turbulent boundary layer for different Mach numbers and wall temperature ratios is studied by direct numerical simulation. A cold wall temperature can enhance the compressibility effect in the near-wall region through increasing the temperature gradient and wall heat flux. It is shown that the cold wall temperature enhances the local reverse transfer of kinetic energy from small scales to large scales, and suppresses the local direct transfer of kinetic energy from large scales to small scales. The average filtered spatial convection and average filtered viscous dissipation are dominant in the near-wall region, while the average subgrid-scale flux of kinetic energy achieves its peak value in the buffer layer. It is found that the wall can suppress the inter-scale transfer of kinetic energy, especially for the situation of a cold wall. A strong local reverse transfer of fluctuating kinetic energy is identified in the buffer layer in the inertial range. Helmholtz decomposition is applied to analyse the compressibility effect on the subgrid-scale flux of kinetic energy. A strong transfer of the solenoidal component of fluctuating kinetic energy is identified in the buffer layer, while a significant transfer of the dilatational component of fluctuating kinetic energy is observed in the near-wall region. It is also shown that compression motions have a major contribution to the direct transfer of fluctuating kinetic energy, while expansion motions play a marked role in the reverse transfer of fluctuating kinetic energy.

The time-dependent structure of the wall region of separating, separated, and reattaching flows is considerably different than that of attached turbulent boundary layers. Large-scale structures, whose frequency of passage scales on the freestream velocity and shear layer thickness, produce large Reynolds shearing stresses and most of the turbulence kinetic energy in the outer region of the shear layer and transport it into the low velocity reversed flow next to the wall. This outer flow impresses a near wall streamwise streaky structure of spanwise spacing λ z simultaneously across the wall over a distance of the order of several λ z . The near wall structures produce negligible Reynolds shear stresses and turbulence kinetic energy.


2014 ◽  
Vol 760 ◽  
pp. 304-312 ◽  
Author(s):  
Farid Karimpour ◽  
Subhas K. Venayagamoorthy

AbstractIn this study, we revisit the consequence of assuming equilibrium between the rates of production ($P$) and dissipation $({\it\epsilon})$ of the turbulent kinetic energy $(k)$ in the highly anisotropic and inhomogeneous near-wall region. Analytical and dimensional arguments are made to determine the relevant scales inherent in the turbulent viscosity (${\it\nu}_{t}$) formulation of the standard $k{-}{\it\epsilon}$ model, which is one of the most widely used turbulence closure schemes. This turbulent viscosity formulation is developed by assuming equilibrium and use of the turbulent kinetic energy $(k)$ to infer the relevant velocity scale. We show that such turbulent viscosity formulations are not suitable for modelling near-wall turbulence. Furthermore, we use the turbulent viscosity $({\it\nu}_{t})$ formulation suggested by Durbin (Theor. Comput. Fluid Dyn., vol. 3, 1991, pp. 1–13) to highlight the appropriate scales that correctly capture the characteristic scales and behaviour of $P/{\it\epsilon}$ in the near-wall region. We also show that the anisotropic Reynolds stress ($\overline{u^{\prime }v^{\prime }}$) is correlated with the wall-normal, isotropic Reynolds stress ($\overline{v^{\prime 2}}$) as $-\overline{u^{\prime }v^{\prime }}=c_{{\it\mu}}^{\prime }(ST_{L})(\overline{v^{\prime 2}})$, where $S$ is the mean shear rate, $T_{L}=k/{\it\epsilon}$ is the turbulence (decay) time scale and $c_{{\it\mu}}^{\prime }$ is a universal constant. ‘A priori’ tests are performed to assess the validity of the propositions using the direct numerical simulation (DNS) data of unstratified channel flow of Hoyas & Jiménez (Phys. Fluids, vol. 18, 2006, 011702). The comparisons with the data are excellent and confirm our findings.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 448
Author(s):  
Paolo Orlandi ◽  
Sergio Pirozzoli

Direct Numerical Simulations have been performed for turbulent flow in circular pipes with smooth and corrugated walls. The numerical method, based on second-order finite discretization together with the immersed boundary technique, was validated and applied to various types of flows. The analysis is focused on the turbulence kinetic energy and its budget. Large differences have been found in the near-wall region at low Reynolds number. The change in the near-wall turbulent structures is responsible for increase of drag and turbulence kinetic energy. To investigatselinae the effects of wall corrugations, the velocity fields have been decomposed so as to isolate coherent and incoherent motions. For corrugated walls, we find that coherent motions are strongest for walls covered with square bars aligned with the flow direction. In particular, the coherent contribution is substantial when the bars are spaced apart by a distance larger than their height. Detailed analysis of the turbulence kinetic energy budget shows for this set-up a very different behavior than for the other types of corrugations.


1994 ◽  
Vol 6 (9) ◽  
pp. 3130-3143 ◽  
Author(s):  
Carlos Härtel ◽  
Leonhard Kleiser ◽  
Friedemann Unger ◽  
Rainer Friedrich

2017 ◽  
Vol 822 ◽  
pp. 5-30 ◽  
Author(s):  
Chao Zhang ◽  
Lian Duan ◽  
Meelan M. Choudhari

Direct numerical simulations of turbulent boundary layers with a nominal free-stream Mach number of $6$ and a Reynolds number of $Re_{\unicode[STIX]{x1D70F}}\approx 450$ are conducted at a wall-to-recovery temperature ratio of $T_{w}/T_{r}=0.25$ and compared with a previous database for $T_{w}/T_{r}=0.76$ in order to investigate pressure fluctuations and their dependence on wall temperature. The wall-temperature dependence of widely used velocity and temperature scaling laws for high-speed turbulent boundary layers is consistent with previous studies. The near-wall pressure-fluctuation intensities are dramatically modified by wall-temperature conditions. At different wall temperatures, the variation of pressure-fluctuation intensities as a function of wall-normal distance is dramatically modified in the near-wall region but remains almost intact away from the wall. Wall cooling also has a strong effect on the frequency spectrum of wall-pressure fluctuations, resulting in a higher dominant frequency and a sharper spectrum peak with a faster roll-off at both the high- and low-frequency ends. The effect of wall cooling on the free-stream noise spectrum can be largely accounted for by the associated changes in boundary-layer velocity and length scales. The pressure structures within the boundary layer and in the free stream evolve less rapidly as the wall temperature decreases, resulting in an increase in the decorrelation length of coherent pressure structures for the colder-wall case. The pressure structures propagate with similar speeds for both wall temperatures. Due to wall cooling, the generated pressure disturbances undergo less refraction before they are radiated to the free stream, resulting in a slightly steeper radiation wave front in the free stream. Acoustic sources are largely concentrated in the near-wall region; wall cooling most significantly influences the nonlinear (slow) component of the acoustic source term by enhancing dilatational fluctuations in the viscous sublayer while damping vortical fluctuations in the buffer and log layers.


Author(s):  
Goe´ric Daeninck ◽  
Gorazd Medic ◽  
Jeremy A. Templeton ◽  
Georgi Kalitzin

In this paper, the RANS/LES coupling formulation proposed in [1–3] is adapted for various RANS turbulence models. In that formulation, the LES subgrid-scale eddy-viscosity is replaced in the near-wall region with a RANS eddy-viscosity dynamically corrected with the resolved turbulent stress. The RANS eddy-viscosity is first obtained from precomputed tables. To further generalize the approach, RANS turbulence model equations (for Spalart-Allmaras and k-ω) are then solved simultaneously with the LES. Detailed results are presented for channel flow at Reτ = 395 and compared to traditional LES. The method is then applied to a serpentine passage and compared with DNS computations [4] at Reτ = 180.


Sign in / Sign up

Export Citation Format

Share Document