On Near-Wall Dynamic Coupling of LES With RANS Turbulence Models

Author(s):  
Goe´ric Daeninck ◽  
Gorazd Medic ◽  
Jeremy A. Templeton ◽  
Georgi Kalitzin

In this paper, the RANS/LES coupling formulation proposed in [1–3] is adapted for various RANS turbulence models. In that formulation, the LES subgrid-scale eddy-viscosity is replaced in the near-wall region with a RANS eddy-viscosity dynamically corrected with the resolved turbulent stress. The RANS eddy-viscosity is first obtained from precomputed tables. To further generalize the approach, RANS turbulence model equations (for Spalart-Allmaras and k-ω) are then solved simultaneously with the LES. Detailed results are presented for channel flow at Reτ = 395 and compared to traditional LES. The method is then applied to a serpentine passage and compared with DNS computations [4] at Reτ = 180.

2002 ◽  
Vol 124 (3) ◽  
pp. 472-484 ◽  
Author(s):  
A. Azzi ◽  
D. Lakehal

The paper presents recent trends in modeling jets in crossflow with relevance to film cooling of turbine blades. The aim is to compare two classes of turbulence models with respect to their predictive performance in reproducing near-wall flow physics and heat transfer. The study focuses on anisotropic eddy-viscosity/diffusivity models and explicit algebraic stress models, up to cubic fragments of strain and vorticity tensors. The first class of models are direct numerical simulation (DNS) based two-layer approaches transcending the conventional k−ε model by means of a nonisotropic representation of the turbulent transport coefficients; this is employed in connection with a near-wall one-equation model resolving the semi-viscous sublayer. The aspects of this new strategy are based on known channel-flow and boundary layer DNS statistics. The other class of models are quadratic and cubic explicit algebraic stress formulations rigorously derived from second-moment closures. The stress-strain relations are solved in the context of a two-layer strategy resolving the near-wall region by means of a nonlinear one-equation model; the outer core flow is treated by use of the two-equation model. The models are tested for the film cooling of a flat plate by a row of streamwise injected jets. Comparison of the calculated and measured wall-temperature distributions shows that only the anisotropic eddy-viscosity/diffusivity model can correctly predict the spanwise spreading of the temperature field and reduce the strength of the secondary vortices. The wall-cooling effectiveness was found to essentially depend on these two particular flow features. The non-linear algebraic stress models were of a mixed quality in film-cooling calculations.


2018 ◽  
Vol 15 (2) ◽  
pp. 75-89
Author(s):  
Muhammad Saiful Islam Mallik ◽  
Md. Ashraf Uddin

A large eddy simulation (LES) of a plane turbulent channel flow is performed at a Reynolds number Re? = 590 based on the channel half width, ? and wall shear velocity, u? by approximating the near wall region using differential equation wall model (DEWM). The simulation is performed in a computational domain of 2?? x 2? x ??. The computational domain is discretized by staggered grid system with 32 x 30 x 32 grid points. In this domain the governing equations of LES are discretized spatially by second order finite difference formulation, and for temporal discretization the third order low-storage Runge-Kutta method is used. Essential turbulence statistics of the computed flow field based on this LES approach are calculated and compared with the available Direct Numerical Simulation (DNS) and LES data where no wall model was used. Comparing the results throughout the calculation domain we have found that the LES results based on DEWM show closer agreement with the DNS data, especially at the near wall region. That is, the LES approach based on DEWM can capture the effects of near wall structures more accurately. Flow structures in the computed flow field in the 3D turbulent channel have also been discussed and compared with LES data using no wall model.


2019 ◽  
Vol 862 ◽  
pp. 1029-1059 ◽  
Author(s):  
Qiang Yang ◽  
Ashley P. Willis ◽  
Yongyun Hwang

A new set of exact coherent states in the form of a travelling wave is reported in plane channel flow. They are continued over a range in $Re$ from approximately $2600$ up to $30\,000$, an order of magnitude higher than those discovered in the transitional regime. This particular type of exact coherent states is found to be gradually more localised in the near-wall region on increasing the Reynolds number. As larger spanwise sizes $L_{z}^{+}$ are considered, these exact coherent states appear via a saddle-node bifurcation with a spanwise size of $L_{z}^{+}\simeq 50$ and their phase speed is found to be $c^{+}\simeq 11$ at all the Reynolds numbers considered. Computation of the eigenspectra shows that the time scale of the exact coherent states is given by $h/U_{cl}$ in channel flow at all Reynolds numbers, and it becomes equivalent to the viscous inner time scale for the exact coherent states in the limit of $Re\rightarrow \infty$. The exact coherent states at several different spanwise sizes are further continued to a higher Reynolds number, $Re=55\,000$, using the eddy-viscosity approach (Hwang & Cossu, Phys. Rev. Lett., vol. 105, 2010, 044505). It is found that the continued exact coherent states at different sizes are self-similar at the given Reynolds number. These observations suggest that, on increasing Reynolds number, new sets of self-sustaining coherent structures are born in the near-wall region. Near this onset, these structures scale in inner units, forming the near-wall self-sustaining structures. With further increase of Reynolds number, the structures that emerged at lower Reynolds numbers subsequently evolve into the self-sustaining structures in the logarithmic region at different length scales, forming a hierarchy of self-similar coherent structures as hypothesised by Townsend (i.e. attached eddy hypothesis). Finally, the energetics of turbulent flow is discussed for a consistent extension of these dynamical systems notions to high Reynolds numbers.


Author(s):  
Dongmei Zhou ◽  
Kenneth S. Ball

This paper has two objectives, (1) to examine the effects of spatial resolution, (2) to examine the effects of computational box size, upon turbulence statistics and the amount of drag reduction with and without the control scheme of wall oscillation. Direct numerical simulation (DNS) of the fully developed turbulent channel flow was performed at Reynolds number of 200 based on the wall-shear velocity and the channel half-width by using spectral methods. For the first objective, four different grids were applied to the same computational domain and the biggest impact was observed on the logarithmic law of mean velocity profiles and on the amount of drag reduction with 28.3% for the coarsest mesh and 35.4% for the finest mesh. Other turbulence features such as RMS velocity fluctuations, RMS vorticity fluctuations, and bursting events were either overpredicted or underpredicted through coarse grids. For the second objective, two different minimal channels and one natural full channel were studied and 3% drag reduction difference was observed between the smallest minimal channel of 39.1% and the natural full channel of 36.2%. In the near-wall region, however, the minimal channel flow did not exhibit significant difference in the mean velocity profiles and other lower-order statistics. Finally, from this systematical study, it showed that the accuracy of DNS depends more on the spanwise resolution, and it also confirmed that a minimal channel model is able to catch key structures of turbulence in the near-wall region but is much less expensive.


Author(s):  
Boris Arcen ◽  
Anne Tanie`re ◽  
Benoiˆt Oesterle´

The importance of using the lift force and wall-corrections of the drag coefficient for modeling the motion of solid particles in a fully-developed channel flow is investigated by means of direct numerical simulation (DNS). The turbulent channel flow is computed at a Reynolds number based on the wall-shear velocity and channel half-width of 185. Contrary to most of the numerical simulations, we consider in the present study a lift force formulation that accounts for the weak and strong shear as well as for the wall effects (hereinafter referred to as optimum lift force), and the wall-corrections of the drag force. The DNS results show that the optimum lift force and the wall-corrections of the drag together have little influence on most of the statistics (particle concentration, mean velocities, and mean relative and drift velocities), even in the near wall region.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 846
Author(s):  
Zaiguo Fu ◽  
Xiaotian Liang ◽  
Kang Zhang

Although the turbulent intensity is suppressed in the drag-reducing channel flow by viscoelastic additives, the mean velocity distribution in the channel flow is symmetrical and tends to be similar to the laminar flow. In the study of near-wall modulation of the drag-reducing flow with an injected ultrathin water layer, an asymmetrical mean velocity distribution was found. To further investigate this phenomenon and the underlying cause, an experiment was carried out with the water injected from a porous channel wall at a small velocity (~10−4 m/s) into the drag-reducing flow of surfactant solution. The instantaneous concentration and flow fields were measured by using planar laser-induced fluorescence (PLIF) and particle imaging velocimetry (PIV) techniques, respectively. Moreover, analyses on turbulent statistical characteristics and spatial distribution of viscoelastic structures were carried out on the basis of comparison among various flow cases. The results showed that the injected ultrathin water layer under present experimental conditions affected the anisotropy of the drag-reducing flow. The characteristics, such as turbulence intensity, showed the zonal feature in the wall-normal direction. The Reynolds shear stress was enhanced in the near-wall region, and the viscoelastic structure was modified severely due to the redistributed stress. These results may provide experimental supports for the near-wall modulation of turbulence and the exploration of the drag-reducing mechanism by viscoelastic additives.


2013 ◽  
Vol 723 ◽  
pp. 126-139 ◽  
Author(s):  
Farid Karimpour ◽  
Subhas K. Venayagamoorthy

AbstractIn this paper, we revisit the eddy viscosity formulation to highlight a number of important issues that have direct implications for the prediction of near-wall turbulence. For steady wall-bounded turbulent flows, we make the equilibrium assumption between rates of production ($P$) and dissipation ($\epsilon $) of turbulent kinetic energy ($k$) in the near-wall region to propose that the eddy viscosity should be given by ${\nu }_{t} \approx \epsilon / {S}^{2} $, where $S$ is the mean shear rate. We then argue that the appropriate velocity scale is given by $\mathop{(S{T}_{L} )}\nolimits ^{- 1/ 2} {k}^{1/ 2} $ where ${T}_{L} = k/ \epsilon $ is the turbulence (decay) time scale. The difference between this velocity scale and the commonly assumed velocity scale of ${k}^{1/ 2} $ is subtle but the consequences are significant for near-wall effects. We then extend our discussion to show that the fundamental length and time scales that capture the near-wall behaviour in wall-bounded shear flows are the shear mixing length scale ${L}_{S} = \mathop{(\epsilon / {S}^{3} )}\nolimits ^{1/ 2} $ and the mean shear time scale $1/ S$, respectively. With these appropriate length and time scales (or equivalently velocity and time scales), the eddy viscosity can be rewritten in the familiar form of the $k$–$\epsilon $ model as ${\nu }_{t} = \mathop{(1/ S{T}_{L} )}\nolimits ^{2} {k}^{2} / \epsilon $. We use the direct numerical simulation (DNS) data of turbulent channel flow of Hoyas & Jiménez (Phys. Fluids, vol. 18, 2006, 011702) and the turbulent boundary layer flow of Jiménez et al. (J. Fluid Mech. vol. 657, 2010, pp. 335–360) to perform ‘a priori’ tests to check the validity of the revised eddy viscosity formulation. The comparisons with the exact computations from the DNS data are remarkable and highlight how well the equilibrium assumption holds in the near-wall region. These findings could prove to be useful in near-wall modelling of turbulent flows.


Sign in / Sign up

Export Citation Format

Share Document