Three-Dimensional Analysis of a Thermo-Viscoelastic Half-Space due to Thermal Shock in Temperature-Rate-Dependent Thermoelasticity

2016 ◽  
Vol 32 (4) ◽  
pp. 401-411 ◽  
Author(s):  
S. Kumar ◽  
J. S. Sikka ◽  
S. Choudhary

AbstractThe present paper is aimed at studying the effects of viscosity and time on the propagation of thermoelastic waves in a homogeneous and isotropic three-dimensional medium whose surface is acted upon by a thermal load under the purview of temperature-rate-dependent thermoelasticity. The normal mode analysis technique has been employed to solve the resulting non-dimensional coupled field equations and hence the exact expressions for displacement component, stress, temperature field and strain are obtained. The problem is further illustrated by computing the numerical values of the field variables for a copper- like material and depicting them graphically. Numerical results predict finite speed of propagation for thermoelastic waves.

2017 ◽  
Vol 14 (03) ◽  
pp. 1750030 ◽  
Author(s):  
Abhik Sur ◽  
M. Kanoria

The present paper deals with the problem of thermoelastic interactions in a homogeneous, isotropic three-dimensional medium whose surface suffers a time dependent thermal loading. The problem is treated on the basis of three-phase-lag model and dual-phase-lag model with two temperatures. The medium is assumed to be unstressed initially and has uniform temperature. Normal mode analysis technique is employed onto the non-dimensional field equations to derive the exact expressions for displacement component, conductive temperature, thermodynamic temperature, stress and strain. The problem is illustrated by computing the numerical values of the field variables for a copper material. Finally, all the physical fields are represented graphically to analyze the difference between the two models. The effect of the two temperature parameter is also discussed.


2017 ◽  
Vol 22 (1) ◽  
pp. 163-174
Author(s):  
S. Santra ◽  
A. Lahiri ◽  
N.C. Das

Abstract The fundamental equations of the two dimensional generalized thermoelasticity (L-S model) with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE), extended thermoelasticity (ETE) and temperature rate dependent thermoelasticity (TRDTE) are compared by means of graphs.


2015 ◽  
Vol 20 (4) ◽  
pp. 717-731
Author(s):  
P. Ailawalia ◽  
S.K. Sachdeva ◽  
D.S. Pathania

Abstract The purpose of this paper is to study the two dimensional deformation due to an internal heat source in a thermoelastic microelongated solid. A mechanical force is applied along an overlaying elastic layer of thickness h. The normal mode analysis has been applied to obtain the exact expressions for the displacement component, force stress, temperature distribution and microelongation. The effect of the internal heat source on the displacement component, force stress, temperature distribution and microelongation has been depicted graphically for Green-Lindsay (GL) theory of thermoelasticity.


2021 ◽  
Vol 30 (3) ◽  
pp. 035030
Author(s):  
Jinsu Kim ◽  
Seung-Yeol Jeon ◽  
Seokbin Hong ◽  
Yongsan An ◽  
Haedong Park ◽  
...  

1993 ◽  
Vol 74 (2) ◽  
pp. 665-681 ◽  
Author(s):  
S. M. Mijailovich ◽  
D. Stamenovic ◽  
J. J. Fredberg

The aim of this study is to develop unifying concepts at the microstructural level to account for macroscopic connective tissue dynamics. We establish the hypothesis that rate-dependent and rate-independent dissipative stresses arise in the interaction among fibers in the connective tissue matrix. A quantitative theoretical analysis is specified in terms of geometry and material properties of connective tissue fibers and surrounding constituents. The analysis leads to the notion of slip and diffusion boundary layers, which become unifying concepts in understanding mechanisms that underlie connective tissue elasticity and energy dissipation during various types of loading. The complex three-dimensional fiber network is simplified to the interaction of two ideally elastic fibers that dissipate energy on slipping interface surfaces. The effects of such interactions are assumed to be expressed in the aggregate matrix. Special solutions of the field equations are obtained analytically, whereas the general solution of the model field equations is obtained numerically. The solutions lead to predictions of tissue behavior that are qualitatively, if not quantitatively, consistent with reports of a variety of dynamic moduli, their dependencies on the rate and amplitude of load application, and some features associated with preconditioning.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 455-466 ◽  
Author(s):  
Ramprasad Prajapati ◽  
Raj Kamal Sanghvi ◽  
Rajendra Kumar Chhajlani ◽  

AbstractThe effect of a magnetic field and suspended dust particles on both the Kelvin-Helmholtz (K-H) and the Rayleigh-Taylor (R-T) instability of two superimposed streaming magnetized plasmas is investigated. The magnetized fluids are assumed to be incompressible and flowing on top of each other. The usual magnetohydrodynamic (MHD) equations are considered with suspended dust particles. The basic equations of the problem are linearized and the dispersion relation is obtained using normal mode analysis by applying the appropriate boundary conditions. The general dispersion relation is found to be modified due to the presence of the suspended dust particles and of the magnetic field. The effect of the magnetic field appears in the dispersion relation if three-dimensional perturbations of the system are considered. The general conditions of the K-H instability as well as the R-T instability are derived for the considered medium. The stability of the system for both cases is discussed by applying the Routh-Hurwitz criterion. Numerical analysis is performed to show the effect of various parameters on the growth rates of the K-H and R-T instabilities. Three different cases of the present configurations are considered and the conditions of instability are obtained. It is found that the conditions for the K-H and R-T instabilities depend on the magnetic field, on the suspended dust particles and on the relaxation frequency of the particles. The magnetic field and particle density have stabilizing influence, while the density difference between the fluids has a destabilizing influence on the growth rate of the K-H and R-T configurations.


1992 ◽  
Vol 29 (3) ◽  
pp. 263-281 ◽  
Author(s):  
T. Sabri �nc� ◽  
T. Bryant Moodie

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kh. Lotfy ◽  
Wafaa Hassan

The theory of two-temperature generalized thermoelasticity based on the theory of Youssef is used to solve boundary value problems of two-dimensional half-space. The governing equations are solved using normal mode method under the purview of the Lord-Şhulman (LS) and the classical dynamical coupled theory (CD). The general solution obtained is applied to a specific problem of a half-space subjected to one type of heating, the thermal shock type. We study the influence of rotation on the total deformation of thermoelastic half-space and the interaction with each other under the influence of two temperature theory. The material is homogeneous isotropic elastic half-space. The methodology applied here is use of the normal mode analysis techniques that are used to solve the resulting nondimensional coupled field equations for the two theories. Numerical results for the displacement components, force stresses, and temperature distribution are presented graphically and discussed. The conductive temperature, the dynamical temperature, the stress, and the strain distributions are shown graphically with some comparisons.


Sign in / Sign up

Export Citation Format

Share Document