Three Dimensional FSI Modelling of Sulcus Vocalis Disorders of Vocal Folds

2018 ◽  
Vol 34 (6) ◽  
pp. 791-800 ◽  
Author(s):  
A. Vazifehdoostsaleh ◽  
N. Fatouraee ◽  
M. Navidbakhsh ◽  
F. Izadi

AbstractThe effect of sulcus vocalis on vocal folds function is investigated. A type II sulcus vocalis is defined, parameterized and incorporated into a three-dimensional, fully coupled finite element model of vocal folds and laryngeal airway. The proposed Fluid-Structure Interaction (FSI) model is utilized in computational fluid dynamics, Arbitrary Lagrangian-Eulerian (ALE), incompressible continuity and Navier-Stokes equations and in a structure range of a three-layer elastic linear model. Flow parameters, vibration behavior and glottal jet aerodynamics of healthy and patient vocal folds models are compared with each other. Flow visualization is utilized to characterize Coanda effect and three dimensionality of flow patterns. The vibration frequency of vocal folds having sulcus vocalis decreases in comparison with that of healthy ones. Upon increasing the volume flux in the sulcus vocalis model, the non-periodic and disordered behavior of it is visible for patient vocal folds. Underlying mechanisms for the observed changes, possible implications for treatments of sulcus vocalis and human perfect voice production are also discussed.

2016 ◽  
Vol 33 (4) ◽  
pp. 513-520 ◽  
Author(s):  
A. Vazifehdoostsaleh ◽  
N. Fatouraee ◽  
M. Navidbakhsh ◽  
F. Izadi

AbstractSpeaking is a very complex process resulting from the interaction between the air flow along the larynx and the vibrating structure of the vocal folds. Sulcus is a disease missing layers in the vocal folds result in cracks resulting in some disorders in producing sounds. Sulcus and its effects on the vocal cord vibrations are numerically studied for the first time in this paper. An ideal model of healthy vocal folds and Sulcus vocalis has been two-dimensionally defined and the finite element model of vocal folds is solved in a fully coupled form. The proposed calculative model was used in a fluid range of the computational fluid dynamics, arbitrary Lagrangian-Eulerian (ALE), incompressible continuity and Navier-Stokes equations and in a structure range of a three-layer elastic linear model. Self-excited oscillations were presented for vocal folds among type II patients and compared with healthy models. Responses were qualitatively and quantitatively studied. The healthy model was compared with numerical and empirical results. In addition, the effects of the disease on the flow parameters and the vibration frequency of the vocal folds were studied. According to the simulated model, the oscillation frequency decreased 25% and the average and instantaneous volume flux significantly increased compared to healthy samples. Results may help present a guideline for surgery and subsequently evaluate patients’ improvement.


2021 ◽  
Vol 11 (11) ◽  
pp. 4748
Author(s):  
Monika Balázsová ◽  
Miloslav Feistauer ◽  
Jaromír Horáček ◽  
Adam Kosík

This study deals with the development of an accurate, efficient and robust method for the numerical solution of the interaction of compressible flow and nonlinear dynamic elasticity. This problem requires the reliable solution of flow in time-dependent domains and the solution of deformations of elastic bodies formed by several materials with complicated geometry depending on time. In this paper, the fluid–structure interaction (FSI) problem is solved numerically by the space-time discontinuous Galerkin method (STDGM). In the case of compressible flow, we use the compressible Navier–Stokes equations formulated by the arbitrary Lagrangian–Eulerian (ALE) method. The elasticity problem uses the non-stationary formulation of the dynamic system using the St. Venant–Kirchhoff and neo-Hookean models. The STDGM for the nonlinear elasticity is tested on the Hron–Turek benchmark. The main novelty of the study is the numerical simulation of the nonlinear vocal fold vibrations excited by the compressible airflow coming from the trachea to the simplified model of the vocal tract. The computations show that the nonlinear elasticity model of the vocal folds is needed in order to obtain substantially higher accuracy of the computed vocal folds deformation than for the linear elasticity model. Moreover, the numerical simulations showed that the differences between the two considered nonlinear material models are very small.


Author(s):  
Mustafa Koz ◽  
Serhat Yesilyurt

Microorganisms such as bacteria use their rotating helical flagella for propulsion speeds up to tens of tail lengths per second. The mechanism can be utilized for controlled pumping of liquids in microchannels. In this study, we aim to analyze the effects of control parameters such as axial span between helical rounds (wavelength), angular velocity of rotations (frequency), and the radius of the helix (amplitude) on the maximum time-averaged flow rate, maximum head, rate of energy transfer, and efficiency of the micropump. The analysis is based on simulations obtained from the three-dimensional time-dependent numerical model of the flow induced by the rotating spiral inside a rectangular-prism channel. The flow is governed by Navier-Stokes equations subject to continuity in time-varying domain due to moving boundaries of the spiral. Numerical solutions are obtained using a commercial finite-element package which uses arbitrary Lagrangian-Eulerian method for mesh deformations. Results are compared with asymptotic results obtained from the resistive-force-theory available in the literature.


Author(s):  
A. F. Tabak ◽  
A. Solak ◽  
E. Y. Erdem ◽  
C. Akcan ◽  
S. Yesilyurt

It is expected that chemical, biological and environmental applications of microdevices will increase with new developments in micromachining techniques. In this work, a micropump design that utilizes passive valves and an actuated diaphragm is presented. The flow rate is controlled by the deflection and the frequency of the diaphragm’s displacement. Passive valves are used for directing the flow. Poiseuille flow analogy is used to generate the equivalent pressure drop and flow rate via modifying the viscosity in the valve-channel in order to replace the variation of the channel width due to valve movement. Overall flow in the micropump is governed by three-dimensional time-dependent Navier Stokes equations. Deformation of the domain due to moving boundaries that coincide with the diaphragm motion is handled with the arbitrary Lagrangian-Eulerian method. Flow rate, hydraulic power and the efficiency of the micropump are obtained with respect to driving frequency and displacement of the diaphragm.


1977 ◽  
Vol 99 (4) ◽  
pp. 640-648 ◽  
Author(s):  
K. N. Ghia ◽  
J. S. Sokhey

The laminar three-dimensional flow in curved ducts has been analyzed for an incompressible viscous fluid. The mathematical model is formulated using three-dimensional parabolized Navier-Stokes equations. The equations are generalized using two indices which permit the choice of Cartesian or cylindrical coordinate systems and straight or curved ducts. The solutions are obtained numerically using an ADI method for a number of duct geometries and flow parameters. The study presents detailed results for developing laminar flow in rectangular curved ducts; also, the effect of longitudinal curvature on secondary flow is fully analyzed. An investigation is made of the occurrence of Dean’s instability and, for curved square ducts, it is found to first appear at Dean number ≃ 143.


Author(s):  
Ke Wan ◽  
Mingzhi Tang ◽  
Donghai Jin ◽  
Xingmin Gui

This paper presents the relation between circumferential fluctuation and the geometric and flow parameters. The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations. Different types of compressor cascades are simulated and the circumferential fluctuation terms are extracted according to the definition of circumferential average. Three different blade profiles are chosen, including CDA, C4 and NACA65 profile, respectively. The peak value of circumferential fluctuation terms often occurs at the leading or the trailing edge and increases as the radius grows. Meanwhile, the circumferential fluctuation terms exist at the inlet of the blade which can be accurately calculated. 0°, 15° and 30° camber angles are chosen to study the influence of camber angle. When the camber angle is smaller, the flow is more uniform and therefore, the value of circumferential fluctuation is lower. Different incidence angles are compared to discuss the relationship between circumferential fluctuation and incidence angle. For specific term of circumferential fluctuations, the distribution curves are different.


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Žarko Milošević ◽  
Dalibor Nikolić ◽  
Igor Saveljić ◽  
Velibor Isailović ◽  
Thanos Bibas ◽  
...  

Benign paroxysmal positional vertigo (BPPV) is the most common type of vertigo. The symptoms of BPPV typically appear after angular movements of the head. BPPV leads to dizziness, nausea and imbalance. In this study, we examined a model of the semi-circular canal (SCC) with fully 3D three dimensional anatomical data from specific patient. A full Navier-Stokes equations and continuity equations are used for fluid domain with Arbitrary-Lagrangian Eulerian (ALE) formulation for mesh motion of finite element. Fluid-structure interaction for fluid coupling with cupula deformation is used. Particle tracking algorithm is implemented for particle motion. Motion of the otoconia particles which is main cause for BPPV is simulated. Velocity distribution, shear stress and force from endolymph side are presented for patient specific three SCC. We compared our numerical models with experiments with head moving and nystagmus eye tracking. Numerical simulation can give more details and understanding of the pathology of the specific patient in standard clinical diagnostic and therapy procedure for BPPV.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


2003 ◽  
Vol 3 ◽  
pp. 195-207
Author(s):  
A.M. Ilyasov ◽  
V.N. Kireev ◽  
S.F. Urmancheev ◽  
I.Sh. Akhatov

The work is devoted to the analysis of the flow of immiscible liquid in a flat channel and the creation of calculation schemes for determining the flow parameters. A critical analysis of the well-known Two Fluids Model was carried out and a new scheme for the determination of wall and interfacial friction, called the hydraulic approximation in the theory of stratified flows, was proposed. Verification of the proposed approximate model was carried out on the basis of a direct numerical solution of the Navier–Stokes equations for each fluid by a finite-difference method with phase-boundary tracking by the VOF (Volume of Fluid) method. The graphical dependencies illustrating the change in the interfase boundaries of liquids and the averaged over the occupied area of the phase velocities along the flat channel are presented. The results of comparative calculations for two-fluid models are also given, according to the developed model in the hydraulic approximation and direct modeling. It is shown that the calculations in accordance with the hydraulic approximation are more consistent with the simulation results. Thus, the model of hydraulic approximation is the most preferred method for calculating stratified flows, especially in cases of variable volumetric content of liquids.


Sign in / Sign up

Export Citation Format

Share Document