Heat Transfer Analysis for Peristalsis of MHD Carreau Fluid in a Curved Channel Through Modified Darcy Law

2018 ◽  
Vol 35 (4) ◽  
pp. 527-535 ◽  
Author(s):  
A. Tanveer ◽  
T. Hayat ◽  
A. Alsaedi ◽  
B. Ahmad

ABSTRACTThe present analysis has been developed to investigate the heat transfer phenomenon in peristaltic flow of Carreau fluid in a curved channel with rhythmic contraction and expansion of waves along the walls (similar to blood flow in tubes). Magnetic field is imposed in radial direction. The heat transfer aspect is further studied with viscous dissipation effect. The curved channel walls are influenced by flow and thermal partial slip. In addition the flow stream comprised porous medium. The system of relevant non-linear PDEs have been reduced to ODEs by utilizing the long wavelength approximation. The striking features of flow and temperature characteristics under the involved parameters are examined by plotting graphs. The generation of fluid temperature and velocity due to viscous dissipation and gravitational efforts are recorded respectively. Moreover indicated results signify activation of velocity, temperature and heat transfer rate with Darcy number.

2012 ◽  
Vol 79 (2) ◽  
Author(s):  
M. Mustafa ◽  
T. Hayat ◽  
Awatif A. Hendi

This communication studies the effect of melting heat transfer on the stagnation-point flow of a Jeffrey fluid over a stretching sheet. Heat transfer analysis is carried out in the presence of viscous dissipation. The arising differential system has been solved by the homotopy analysis method (HAM). The results indicate an increase in the velocity and the boundary layer thickness with an increase in the values of the elastic parameter (Deborah number) for a Jeffrey fluid which are opposite to those accounted for in the literature for the other subclasses of rate type fluids. Furthermore, an increase in the melting process corresponds to an increase in the velocity and a decrease in the temperature. A comparative study between the current computations and the previous studies is also presented in a limiting sense.


2020 ◽  
Vol 91 (2) ◽  
pp. 20904
Author(s):  
Zouhira Hireche ◽  
Lyes Nasseri ◽  
Djamel Eddine Ameziani

This article presents the hydrodynamic and thermal characteristics of transfers by forced, mixed and natural convection in a room ventilated by air displacement. The main objective is to study the effect of a porous partition on the heat transfer and therefore the thermal comfort in the room. The fluid flow future in the cavity and the heat transfer rate on the active wall have been analyzed for different permeabilities: 10−6 ≤ Da ≤ 10. The other control parameters are obviously, the Rayleigh number and the Reynolds number varied in the rows: 10 ≤ Ra ≤ 106 and 50 ≤ Re ≤ 500 respectively. The transfer equations write were solved by the Lattice Boltzmann Multiple Relaxation Time method. For flow in porous media an additional term is added in the standard LB equations, to consider the effect of the porous media, based on the generalized model, the Brinkman-Forchheimer-extended Darcy model. The most important conclusion is that the Darcian regime start for small Darcy number Da < 10−4. Spatial competition between natural convection cell and forced convection movement is observed as Ra and Re rise. The effect of Darcy number values and the height of the porous layer is barely visible with a maximum deviation less than 7% over the ranges considered. Note that the natural convection regime is never reached for low Reynolds numbers. For this Re values the cooperating natural convection only improves transfers by around 10% while, for the other Reynolds numbers the improvement in transfers due to natural and forced convections cooperation is more significant.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983358
Author(s):  
Hongyan Chu ◽  
Xuecong Lin ◽  
Ligang Cai

In the offset press, ink flows in the microchannel made of two rotating rollers that are in the state of squeezing and contacting. The ink flow characteristics are not only influenced by the viscous dissipation effect, but also change with the heat transfer. First, by summarizing the common viscosity–shear rate models of non-Newtonian fluid, the power law model was chosen for describing offset ink through rheometer measuring. Combined with the experimental data, the viscosity–temperature relationship of the offset ink was described by the Arrhenius’s law. Then, the temperature characteristics of the offset ink fluid in the microchannel were studied using the fluid simulation software FLUENT. The ink fluid temperature field model considering viscous dissipation and heat transfer was established, and the temperature distributions of the ink fluid inside the microchannel and at the exit and entrance were obtained. The influence of the feature size on the ink temperature was also researched. Finally, the ink temperature and flow characteristics were compared with that under the condition without heat transfer. We got the influence of feature size and heat transfer on the ink temperature characteristics. As the feature size is smaller, the ink temperature increase from the microchannel entrance to the exit, increases first and then decreases, and keeps invariant at last. The heat transfer makes the viscous dissipation weaken relatively and then the ink temperature decreases. In a word, the heat transfer enhances as the feature size decreases. The results provide reference for improving the printing quality of offset press.


2005 ◽  
Author(s):  
Liping Cheng ◽  
Andrey V. Kuznetsov

This paper investigates numerically heat transfer in a helical pipe filled with a fluid saturated porous medium. The analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are analyzed.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4286
Author(s):  
Shabbir Ahmad ◽  
Kashif Ali ◽  
Sohail Ahmad ◽  
Jianchao Cai

The heat transfer Magnetohydrodynamics flows have been potentially used to enhance the thermal characteristics of several systems such as heat exchangers, electromagnetic casting, adjusting blood flow, X-rays, magnetic drug treatment, cooling of nuclear reactors, and magnetic devices for cell separation. Our concern in this article is to numerically investigate the flow of an incompressible Magnetohydrodynamics micropolar fluid with heat transportation through a channel having porous walls. By employing the suitable dimensionless coordinates, the flow model equations are converted into a nonlinear system of dimensionless ordinary differential equations, which are then numerically treated for different preeminent parameters with the help of quasi-linearization. The system of complex nonlinear differential equations can efficiently be solved using this technique. Impact of the problem parameters for microrotation, temperature, and velocity are interpreted and discussed through tables and graphs. The present numerical results are compared with those presented in previous literature and examined to be in good contact with them. It has been noted that the imposed magnetic field acts as a frictional force which not only increases the shear stresses and heat transfer rates at the channel walls, but also tends to rotate the micro particles in the fluid more rapidly. Furthermore, viscous dissipation may raise fluid temperature to such a level that the possibility of thermal reversal exists, at the geometric boundaries of the domain. It is therefore recommended that external magnetic fields and viscous dissipation effects may be considered with caution in applications where thermal control is required.


Author(s):  
M Ghazvini ◽  
M A Akhavan-Behabadi ◽  
M Esmaeili

The present article focuses on analytical and numerical study on the effect of viscous dissipation when nanofluid is used as the coolant in a microchannel heat sink (MCHS). The nanofluid is made from CuO nanoparticles and water. To analyse the MCHS, a modified Darcy equation for the fluid and two-equation model for heat transfer between fluid and solid sections are employed in porous media approach. In addition, to deal with nanofluid heat transfer, a model based on the Brownian motion of nanoparticles is used. The model evaluates the thermal conductivity of nanofluid considering the thermal boundary resistance, nanoparticle diameter, volume fraction, and the fluid temperature. At first, the effects of particle volume fraction on temperature distribution and overall heat transfer coefficient are investigated with and without considering viscous dissipation. After that, the influence of different channel aspect ratios and porosities is studied. The results show that for nanofluid flow in microchannels, the viscous dissipation can be neglected for low volume fractions and aspect ratios only. Finally, the effect of porosity and Brinkman number on the overall Nusselt number is studied, where asymptotic behaviour of the Nusselt number is observed and discussed from the energy balance point of view.


Sign in / Sign up

Export Citation Format

Share Document