scholarly journals Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains

2017 ◽  
Vol 64 (243) ◽  
pp. 12-26 ◽  
Author(s):  
ROBERTO GARZONIO ◽  
BIAGIO DI MAURO ◽  
DANIELE STRIGARO ◽  
MICOL ROSSINI ◽  
ROBERTO COLOMBO ◽  
...  

ABSTRACTIce cores from mid-latitude mountain glaciers provide detailed information on past climate conditions and regional environmental changes, which is essential for placing current climate change into a longer term perspective. In this context, it is important to define guidelines and create dedicated maps to identify suitable areas for future ice-core drillings. In this study, the suitability for ice-core drilling (SICD) of a mountain glacier is defined as the possibility of extracting an ice core with preserved stratigraphy suitable for reconstructing past climate. Morphometric and climatic variables related to SICD are selected through literature review and characterization of previously drilled sites. A quantitative Weight of Evidence method is proposed to combine selected variables (i.e. slope, local relief, temperature and direct solar radiation) to map the potential drilling sites in mid-latitude mountain glaciers. The method was first developed in the European Alps and then applied to the Asian High Mountains. Model performances and limitations are discussed and first indications of new potential drilling sites in the Asian High Mountains are provided. Results presented here can facilitate the selection of future drilling sites especially on unexplored Asian mountain glaciers towards the understanding of climate and environmental changes.

2000 ◽  
Vol 46 (153) ◽  
pp. 341-345 ◽  
Author(s):  
H. Engelhardt ◽  
B. Kamb ◽  
R. Bolsey

AbstractA new method of ice-core drilling uses an annulus of hot-water jets to melt out a cylindrical ice core. This lightweight device used in combination with a fast hot-water drill can quickly obtain ice cores from any depth.


2021 ◽  
Author(s):  
Florian Ritterbusch ◽  
Jinho Ahn ◽  
Ji-Qiang Gu ◽  
Wei Jiang ◽  
Giyoon Lee ◽  
...  

<p>Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods cannot be readily applied. The noble-gas radioisotopes <sup>81</sup>Kr and <sup>39</sup>Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. <sup>81</sup>Kr (half-life 229 ka) covers the time span of 50-1300 ka, which is particularly relevant for polar ice cores, whereas <sup>39</sup>Ar (half-life 269 a) with a dating range of 50-1800 a is suitable for high mountain glaciers. For a long time the use of <sup>81</sup>Kr and <sup>39</sup>Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size.</p><p>Here, we present <sup>81</sup>Kr and <sup>39</sup>Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for <sup>81</sup>Kr and 2-5 kg for <sup>39</sup>Ar. Recent advances in further decreasing the sample size and increasing the dating precision will be discussed. Current studies include <sup>81</sup>Kr dating in shallow ice cores from the Larsen Blue ice area, East Antarctica, in order to retrieve climate signals from the last glacial termination. Moreover, an <sup>39</sup>Ar profile from a central Tibetan ice core has been obtained in combination with layer counting based on isotopic and visual stratigraphic signals. The presented studies demonstrate how <sup>81</sup>Kr and <sup>39</sup>Ar can constrain the age range of ice cores and complement other methods in developing an ice core chronology.</p><p> </p><p>[1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)<br>[2] C. Buizert, Radiometric <sup>81</sup>Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, <strong>111</strong>, 6876, (2014)</p><p>[3] L. Tian, <sup>81</sup>Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)</p><p>http://atta.ustc.edu.cn</p>


2018 ◽  
Vol 14 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Pascal Bohleber ◽  
Tobias Erhardt ◽  
Nicole Spaulding ◽  
Helene Hoffmann ◽  
Hubertus Fischer ◽  
...  

Abstract. Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a “Little Ice Age” cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.


2019 ◽  
Vol 65 (249) ◽  
pp. 149-156 ◽  
Author(s):  
ZHENGYI HU ◽  
PAVEL TALALAY ◽  
ZHICHUAN ZHENG ◽  
PINLU CAO ◽  
GUITAO SHI ◽  
...  

ABSTRACTIce-core drilling to depths of 200–300 m is an important part of research studies concerned with paleoclimate reconstruction and anthropogenic climate change. However, conventional drilling methods face difficulties due to firn permeability. We have developed an electromechanical ice-core drill with air reverse circulation at the hole bottom. We believe that the new drilling system will recover ice cores faster than shallow auger drills, with high efficiency and low energy consumption. The theoretically estimated up-hole speed of the airflow should be not <7.7 m s−1 to allow proper removal of ice cuttings from the borehole bottom. The computer simulation and test results showed that the design of the new ice-coring drill is feasible. The maximum allowed penetration rate depends by square law on airflow.


2020 ◽  
Author(s):  
Florian Ritterbusch ◽  
Yan-Qing Chu ◽  
Ilaria Crotti ◽  
Xi-Ze Dong ◽  
Ji-Qiang Gu ◽  
...  

&lt;p&gt;Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods are not readily applied. The noble gas radioisotopes &lt;sup&gt;81&lt;/sup&gt;Kr and &lt;sup&gt;39&lt;/sup&gt;Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. &lt;sup&gt;81&lt;/sup&gt;Kr (half-life 229 ka) covers the time span from 50-1300 ka, which is particularly relevant for polar ice cores, whereas &lt;sup&gt;39&lt;/sup&gt;Ar (half-life 269 a) with a dating range of 50-1400 a is suitable for high mountain glaciers. For a long time the use of &lt;sup&gt;81&lt;/sup&gt;Kr and &lt;sup&gt;39&lt;/sup&gt;Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size. Here, we report on &lt;sup&gt;81&lt;/sup&gt;Kr and &lt;sup&gt;39&lt;/sup&gt;Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for &lt;sup&gt;81&lt;/sup&gt;Kr and 2-5 kg for &lt;sup&gt;39&lt;/sup&gt;Ar. Among others, we measured &lt;sup&gt;81&lt;/sup&gt;Kr in the lower section of Taldice ice core, which is difficult to date by conventional methods, and in the meteoric bottom of the Vostok ice core in comparison with an age scale derived from hydrate growth. Moreover, we have obtained an &lt;sup&gt;39&lt;/sup&gt;Ar profile for an ice core from central Tibet in combination with a timescale constructed by layer counting. The presented studies demonstrate how the obtained &lt;sup&gt;81&lt;/sup&gt;Kr and &lt;sup&gt;39&lt;/sup&gt;Ar ages can complement other methods in developing an ice core chronology, especially for the bottom part.&lt;/p&gt;&lt;p&gt;[1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)&lt;/p&gt;&lt;p&gt;[2] C. Buizert, Radiometric &lt;sup&gt;81&lt;/sup&gt;Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, &lt;strong&gt;111&lt;/strong&gt;, 6876, (2014)&lt;/p&gt;&lt;p&gt;[3] L. Tian, &lt;sup&gt;81&lt;/sup&gt;Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)&lt;/p&gt;&lt;p&gt;[4] http://atta.ustc.edu.cn&lt;/p&gt;


2005 ◽  
Vol 17 (4) ◽  
pp. 487-495 ◽  
Author(s):  
ERIC W. WOLFF

Antarctic ice cores have become a unique and powerful resource for studies of climate change. They contain information on past climate, on forcing factors such as greenhouse gas concentrations, and on numerous other environmental parameters. For recent centuries, sites with high snow accumulation are chosen. They have, for example, provided the only direct evidence that carbon dioxide concentrations have increased by over 30% over the last two centuries. They have provided key datasets for other greenhouse gases, and for other forcings such as solar and volcanic. Over longer timescales, the Vostok ice core has shown how greenhouse gas concentrations and climate have closely tracked one another over the last 400 000 years. Other cores have shown detailed spatial and temporal detail of climate transitions, including the Antarctic response during rapid climate events such as Dansgaard-Oeschger events. The new core from Dome C has extended the range of ice cores back beyond 800 000 years, and even older ice could be obtained in future projects.


2020 ◽  
Author(s):  
Soon Do Hur ◽  
Sang-Bum Hong ◽  
Heejin Hwang ◽  
Khanghyun Lee ◽  
Yeongcheol Han ◽  
...  

2017 ◽  
Author(s):  
Pascal Bohleber ◽  
Tobias Erhardt ◽  
Nicole Spaulding ◽  
Helene Hoffmann ◽  
Hubertus Fischer ◽  
...  

Abstract. Among ice core drilling sites in the European Alps, the Colle Gnifetti (CG) glacier saddle is the only one to offer climate records back to at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. To-date, however, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighboring ice core, we explore the potential for reconstructing long-term temperature variability from the stable water isotope and mineral dust proxy time series. A high and potentially non-stationary isotope/temperature sensitivity limits the quantitative use of the stable isotope variability thus far. However, we find substantial agreement comparing the mineral dust proxy Ca2+ with instrumental temperature. The temperature-related variability in the Ca2+ record is explained based on the temperature-dependent snow preservation bias combined with the advection of dust-rich air masses coinciding with warm temperatures. We show that using the Ca2+ trends for a quantitative temperature reconstruction results in good agreement with instrumental temperature and the latest summer temperature reconstruction derived from other archives covering the last 1000 years. This includes a Little Ice Age cold period as well as a medieval climate anomaly. In particular, part of the medieval climate period around 1100–1200 AD stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and dry conditions over the Mediterranean.


2018 ◽  
Author(s):  
Amaëlle Landais ◽  
Emilie Capron ◽  
Valérie Masson-Delmotte ◽  
Samuel Toucanne ◽  
Rachael Rhodes ◽  
...  

Abstract. The last deglaciation represents the most recent example of natural global warming associated with large-scale climate changes. In addition to the long-term global temperature increase, the last deglaciation onset is punctuated by a sequence of abrupt changes in the Northern Hemisphere. Such interplay between orbital- and millennial-scale variability is widely documented in paleoclimatic records but the underlying mechanisms are not fully understood. Limitations arise from the difficulty in constraining the sequence of events between external forcing, high- and low- latitude climate and environmental changes. Greenland ice cores provide sub-decadal-scale records across the last deglaciation and contain fingerprints of climate variations occurring in different regions of the Northern Hemisphere. Here, we combine new ice d-excess and 17O-excess records, tracing changes in the mid-latitudes, with ice δ18O records of polar climate. Within Heinrich Stadial 1, we demonstrate a decoupling between climatic conditions in Greenland and those of the lower latitudes. While Greenland temperature remains mostly stable from 17.5 to 14.7 ka, significant change in the mid latitudes of northern Atlantic takes place at ~ 16.2 ka, associated with warmer and wetter conditions of Greenland moisture sources. We show that this climate modification is coincident with abrupt changes in atmospheric CO2 and CH4 concentrations recorded in an Antarctic ice core. Our coherent ice core chronological framework and comparison with other paleoclimate records suggests a mechanism involving two-step freshwater fluxes in the North Atlantic associated with a southward shift of the intertropical convergence zone.


1990 ◽  
Vol 14 ◽  
pp. 363
Author(s):  
Wu Xiaoling ◽  
Liu Jingsona ◽  
Yang Qinzhou

This paper gives the preliminary results of 26 trace element measurements of ice cores from Dunde Ice Cap, China. The chemical composition of soluble impurities along ice core D-1 covering the last 500 years B P., is reported and interpreted in terms of atmospheric contributions. The dust content in ice cores of Dunde Ice Cap is 36 times higher than in Byrd Station, Antarctica. Variations of soluble elements such as Ca, Mg, Κ and Na, in Dunde Ice cores are very sensitive to climatic and environmental changes. The 25 trace elements in ice core D-1 (K, Na, Ca, Mg, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Pb, Al, Sr, Ti, V, Zn, As, Ba, Β, Li, Ρ, S, Sn) were measured. Cationicions arranged in order of content are as follows: Ca &gt; Na &gt; Mg &gt; Κ &gt; Αl &gt; Fe &gt; Ζn &gt; Cu &gt; Μn &gt; Pb &gt; Cr &gt; Ni &gt; Co &gt; Cd etc. The content of soluble impurities has typical terrestrial features. Rock-forming elements such as Ca, Mg, Κ, Na, Si, Al, and Fe make up 99% in the core samples. Particular attention is given to the possible impact of the so-called “pre-Industrial Revolution period” and man’s influence on the atmospheric chemistry. The spectral analysis of time series for the variation of each of the 26 contributions show a 92 year cycle that is present in the variation of all 26 ions with depth. Short-term variations, such as 23, 31, 48, 81 year cycles, are also discussed. The ice-core research program has been supported by the Chinese National Foundation of Natural Science under Grant DO125-4860011.


Sign in / Sign up

Export Citation Format

Share Document