scholarly journals Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard

2019 ◽  
Vol 65 (249) ◽  
pp. 136-148 ◽  
Author(s):  
CESAR DESCHAMPS-BERGER ◽  
CHRISTOPHER NUTH ◽  
WARD VAN PELT ◽  
ETIENNE BERTHIER ◽  
JACK KOHLER ◽  
...  

ABSTRACTIn this study, we combine remote sensing, in situ and model-derived datasets from 1966 to 2014 to calculate the mass-balance components of Kronebreen, a fast-flowing tidewater glacier in Svalbard. For the well-surveyed period 2009–2014, we are able to close the glacier mass budget within the prescribed errors. During these 5 years, the glacier geodetic mass balance was −0.69 ± 0.12 m w.e. a−1, while the mass budget method led to a total mass balance of −0.92 ± 0.16 m w.e. a−1, as a consequence of a strong frontal ablation (−0.78 ± 0.11 m w.e. a−1), and a slightly negative climatic mass balance (−0.14 ± 0.11 m w.e. a−1). The trend towards more negative climatic mass balance between 1966–1990 (+0.20 ± 0.05 m w.e. a−1) and 2009–2014 is not reflected in the geodetic mass balance trend. Therefore, we suspect a reduction in ice-discharge in the most recent period. Yet, these multidecadal changes in ice-discharge cannot be measured from the available observations and thus are only estimated with relatively large errors as a residual of the mass continuity equation. Our study presents the multidecadal evolution of the dynamics and mass balance of a tidewater glacier and illustrates the errors introduced by inferring one unmeasured mass-balance component from the others.

2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


1979 ◽  
Vol 24 (90) ◽  
pp. 77-87 ◽  
Author(s):  
N. W. Young

AbstractRecent measurements of accumulation and ice velocity made in the interior of East Antarctica indicate that a large sector between longitudes 80° E. and 135° E. and north of latitude 80° S. has close to a zero net mass budget. This sector is within the study area for the International Antarctic Glaciological Project (I.A.G.P.) and covers a major portion of the area indicated for projects of special emphasis. Velocity measurements were made at a number of points on a traverse route from Mirny (lat. 66° 33′ S., long. 93°00′ E.) on the coast Dome “C” (lat. 74° 40′ S., long. 124° 00′ E.), in the interior. Accumulation measurements were made along this and other traverse routes, extending as far as Vostok (lat. 78° 28′ S., long. 106° 50′ E.), by a number of methods. These included stake, stratigraphic, isotopic, and totalβ-decay observations. The better accumulation data have allowed a review of the total mass input to be made. The true mass budget has been estimated by comparing velocities, calculated assuming a zero net mass budget with measured velocities along the traverse routes and on a number of the outlet glaciers. For this purpose the area was divided into a number of drainage basins according to outlet at the coast. The area of about 106km2and 150 Gt a−1flux input is drained primarily by three glacier systems of which the Totten accounts for 40% of the flux from 55% of the area; the Vanderford 20% from 15%; and the Scott/Denman 20% from 20%.


2021 ◽  
Vol 15 (3) ◽  
pp. 1259-1276
Author(s):  
Christian Vincent ◽  
Diego Cusicanqui ◽  
Bruno Jourdain ◽  
Olivier Laarman ◽  
Delphine Six ◽  
...  

Abstract. Mass balance observations are very useful to assess climate change in different regions of the world. As opposed to glacier-wide mass balances which are influenced by the dynamic response of each glacier, point mass balances provide a direct climatic signal that depends on surface accumulation and ablation only. Unfortunately, major efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach that determines point surface mass balances from remote sensing observations. We call this balance the geodetic point surface mass balance. From observations and modelling performed on the Argentière and Mer de Glace glaciers over the last decade, we show that the vertical ice flow velocity changes are small in areas of low bedrock slope. Therefore, assuming constant vertical velocities in time for such areas and provided that the vertical velocities have been measured for at least 1 year in the past, our method can be used to reconstruct annual point surface mass balances from surface elevations and horizontal velocities alone. We demonstrate that the annual point surface mass balances can be reconstructed with an accuracy of about 0.3 m of water equivalent per year (m w.e. a−1) using the vertical velocities observed over the previous years and data from unmanned aerial vehicle images. Given the recent improvements of satellite sensors, it should be possible to apply this method to high-spatial-resolution satellite images as well.


2013 ◽  
Vol 59 (213) ◽  
pp. 115-128 ◽  
Author(s):  
Francisco J. Navarro ◽  
Ulf Y. Jonsell ◽  
María I. Corcuera ◽  
Alba Martín-Español

AbstractA new 10 year surface mass balance (SMB) record of Hurd and Johnsons Glaciers, Livingston Island, Antarctica, is presented and compared with earlier estimates on the basis of local and regional meteorological conditions and trends. Since Johnsons is a tidewater glacier, we also include a calving flux calculation to estimate its total mass balance. The average annual SMB over the 10 year observation period 2002–11 is −0.15 ± 0.10 m w.e. for Hurd Glacier and 0.05 ± 0.10 m w.e. for Johnsons Glacier. Adding the calving losses to the latter results in a total mass balance of −0.09 ± 0.10 m w.e. There has been a deceleration of the mass losses of these glaciers from 1957–2000 to 2002–11, which have nearly halved for both glaciers. We attribute this decrease in the mass losses to a combination of increased accumulation in the region and decreased melt. The increased accumulation is attributed to larger precipitation associated with the recent deepening of the circumpolar pressure trough, while the melt decrease is associated with lower summer surface temperatures during the past decade.


2017 ◽  
Vol 11 (3) ◽  
pp. 1501-1517 ◽  
Author(s):  
Joaquín M. C. Belart ◽  
Etienne Berthier ◽  
Eyjólfur Magnússon ◽  
Leif S. Anderson ◽  
Finnur Pálsson ◽  
...  

Abstract. Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (<  0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.


2016 ◽  
Author(s):  
Lucas Ruiz ◽  
Etienne Berthier ◽  
Maximiliano Viale ◽  
Pierre Pitte ◽  
Mariano Masiokas

Abstract. Glaciers in the North Patagonian Andes (35°–46° S) have shown a dramatic area decline in the last decades. However, little it is known about glacier mass balance changes in this region. This study presents a geodetic mass balance estimate of Monte Tronador (41.15° S; 71.88° W) glaciers by comparing a Pléiades DEM acquired in 2012 with the SRTM X-band DEM acquired in 2000. We find a slightly negative Monte Tronador-wide mass budget of −0.17 m w.e. a-1 (range from −0.54 to 0.14 m w.e. a-1 for individual glaciers) and a slightly negative trend in glacier extent (−0.098 km2 a-1) over the 2000–2012 period. With few exceptions, debris covered valley glaciers that descend below a bedrock cliff are losing mass at higher rates, while mountain glaciers whose termini are located above this cliff are closer to mass equilibrium. Climate variations over the last decades show a notable increase in warm season temperatures in the late 1970s but limited warming afterward. These warmer conditions combined with an overall drying trend may explain the moderate ice mass loss observed at Monte Tronador. The almost balanced mass budget of mountain glaciers suggests that they are probably approaching a dynamic equilibrium with current (post-1977) climate, whereas the valley glaciers tongues will continue to retreat. The slightly negative overall mass budget of Monte Tronador glaciers contrasts with the highly negative mass balance estimates observed in the Patagonian Icefields further south.


2016 ◽  
Author(s):  
Thomas Krings ◽  
Bruno Neininger ◽  
Konstantin Gerilowski ◽  
Sven Krautwurst ◽  
Michael Buchwitz ◽  
...  

Abstract. Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations by the MAMAP instrument and airborne in-situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal fired power plants. For the analysis of in-situ data, a mass balance approach is described and applied. Whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within a few percent for cases where in-situ measurements were made for the complete vertical plume extent. Even though the power plants are partly in close proximity and the associated carbon dioxide plumes are overlapping it is possible to derive emission rates from remote sensing data for individual power plants that agree well with results derived from emission factors and energy production data for the time of the overflight.


2017 ◽  
Vol 11 (1) ◽  
pp. 619-634 ◽  
Author(s):  
Lucas Ruiz ◽  
Etienne Berthier ◽  
Maximiliano Viale ◽  
Pierre Pitte ◽  
Mariano H. Masiokas

Abstract. Glaciers in the northern Patagonian Andes (35–46° S) have shown a dramatic decline in area in the last decades. However, little is known about glacier mass balance changes in this region. This study presents a geodetic mass balance estimate of Monte Tronador (41.15° S; 71.88° W) glaciers by comparing a Pléiades digital elevation model (DEM) acquired in 2012 with the Shuttle Radar Topography Mission (SRTM) X-band DEM acquired in 2000. We find a slightly negative Monte-Tronador-wide mass budget of −0.17 m w.e. a−1 (ranging from −0.54 to 0.14 m w.e. a−1 for individual glaciers) and a slightly negative trend in glacier extent (−0.16 % a−1) over the 2000–2012 period. With a few exceptions, debris-covered valley glaciers that descend below a bedrock cliff are losing mass at higher rates, while mountain glaciers with termini located above this cliff are closer to mass equilibrium. Climate variations over the last decades show a notable increase in warm season temperatures in the late 1970s but limited warming afterwards. These warmer conditions combined with an overall drying trend may explain the moderate ice mass loss observed at Monte Tronador. The almost balanced mass budget of mountain glaciers suggests that they are probably approaching a dynamic equilibrium with current (post-1977) climate, whereas the valley glaciers tongues will continue to retreat. The slightly negative overall mass budget of Monte Tronador glaciers contrasts with the highly negative mass balance estimates observed in the Patagonian ice fields further south.


2021 ◽  
Author(s):  
Cinthya Bello ◽  
Wilson Suarez ◽  
Fabian Brondi ◽  
Gilbert Gonzales

&lt;p&gt;Glaciers are a key indicator of climate change. Since the second half of the 20th century several glaciers in Antarctica have retreated. In situ measurements of glacier mass balance in the Antarctic Peninsula and its surrounding islands are very scarce because this area is inaccessible due to rough terrain and inhospitable atmospheric conditions, but there is a necessity in study peripheral glaciers dynamics to know their future contribution to sea level rise. To fill this gap, remote sensing is an alternative tool to enable timely monitoring of dynamic glaciers and quantifying spatial-temporal changes. Here we combine remote sensing (satellite imaginary and aerial photos) and in situ measurements to calculate mass balance for the Znosko glacier (King George Island, Antarctic Peninsula) and compare the accuracy of this methods. Two field campaigns were carried out during the XXVI and XXVII Peruvian Antarctic Operation (austral summer 2018/19 and 2019/20). 19 stakes were fixed on the glacier surface, in situ mass balance data were collected from yearly stake measurements. Also, digital elevation models were generated through aerial photogrammetry and auxiliary data from the ICESat-2 mission were included into the analysis. &amp;#160;We find that mass balances estimated with these methods are consistent and confirm the mass loss (heterogeneous pattern between accumulation and ablation zone) and retreat of Znosko glacier. We illustrate how participatory mapping (interdisciplinary team) can complement initial remote sensing land cover classification and assist ground checks.&lt;/p&gt;


2018 ◽  
Vol 11 (2) ◽  
pp. 721-739 ◽  
Author(s):  
Thomas Krings ◽  
Bruno Neininger ◽  
Konstantin Gerilowski ◽  
Sven Krautwurst ◽  
Michael Buchwitz ◽  
...  

Abstract. Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.


Sign in / Sign up

Export Citation Format

Share Document