Steady-state analysis of load-balancing algorithms in the sub-Halfin–Whitt regime

2020 ◽  
Vol 57 (2) ◽  
pp. 578-596 ◽  
Author(s):  
Xin Liu ◽  
Lei Ying

AbstractWe study a class of load-balancing algorithms for many-server systems (N servers). Each server has a buffer of size $b-1$ with $b=O(\sqrt{\log N})$, i.e. a server can have at most one job in service and $b-1$ jobs queued. We focus on the steady-state performance of load-balancing algorithms in the heavy traffic regime such that the load of the system is $\lambda = 1 - \gamma N^{-\alpha}$ for $0<\alpha<0.5$ and $\gamma > 0,$ which we call the sub-Halfin–Whitt regime ($\alpha=0.5$ is the so-called Halfin–Whitt regime). We establish a sufficient condition under which the probability that an incoming job is routed to an idle server is 1 asymptotically (as $N \to \infty$) at steady state. The class of load-balancing algorithms that satisfy the condition includes join-the-shortest-queue, idle-one-first, join-the-idle-queue, and power-of-d-choices with $d\geq \frac{r}{\gamma}N^\alpha\log N$ (r a positive integer). The proof of the main result is based on the framework of Stein’s method. A key contribution is to use a simple generator approximation based on state space collapse.


2016 ◽  
Vol 53 (4) ◽  
pp. 1111-1124 ◽  
Author(s):  
Debankur Mukherjee ◽  
Sem C. Borst ◽  
Johan S. H. van Leeuwaarden ◽  
Philip A. Whiting

Abstract We consider a system of N parallel queues with identical exponential service rates and a single dispatcher where tasks arrive as a Poisson process. When a task arrives, the dispatcher always assigns it to an idle server, if there is any, and to a server with the shortest queue among d randomly selected servers otherwise (1≤d≤N). This load balancing scheme subsumes the so-called join-the-idle queue policy (d=1) and the celebrated join-the-shortest queue policy (d=N) as two crucial special cases. We develop a stochastic coupling construction to obtain the diffusion limit of the queue process in the Halfin‒Whitt heavy-traffic regime, and establish that it does not depend on the value of d, implying that assigning tasks to idle servers is sufficient for diffusion level optimality.



2020 ◽  
Vol 45 (3) ◽  
pp. 1069-1103
Author(s):  
Anton Braverman

This paper studies the steady-state properties of the join-the-shortest-queue model in the Halfin–Whitt regime. We focus on the process tracking the number of idle servers and the number of servers with nonempty buffers. Recently, Eschenfeldt and Gamarnik proved that a scaled version of this process converges, over finite time intervals, to a two-dimensional diffusion limit as the number of servers goes to infinity. In this paper, we prove that the diffusion limit is exponentially ergodic and that the diffusion scaled sequence of the steady-state number of idle servers and nonempty buffers is tight. Combined with the process-level convergence proved by Eschenfeldt and Gamarnik, our results imply convergence of steady-state distributions. The methodology used is the generator expansion framework based on Stein’s method, also referred to as the drift-based fluid limit Lyapunov function approach in Stolyar. One technical contribution to the framework is to show how it can be used as a general tool to establish exponential ergodicity.



2019 ◽  
Vol 67 (6) ◽  
pp. 1678-1698
Author(s):  
Rami Atar ◽  
Isaac Keslassy ◽  
Gal Mendelson

The degree to which delays or queue lengths equalize under load-balancing algorithms gives a good indication of their performance. Some of the most well-known results in this context are concerned with the asymptotic behavior of the delay or queue length at the diffusion scale under a critical load condition, where arrival and service rates do not vary with time. For example, under the join-the-shortest-queue policy, the queue length deviation process, defined as the difference between the greatest and smallest queue length as it varies over time, is at a smaller scale (subdiffusive) than that of queue lengths (diffusive).



1999 ◽  
Vol 10 (5) ◽  
pp. 497-509 ◽  
Author(s):  
CHARLES KNESSL

We consider the classic shortest queue problem in the heavy traffic limit. We assume that the second server works slowly and that the service rate of the first server is nearly equal to the arrival rate. Solving for the (asymptotic) joint steady state queue length distribution involves analyzing a backward parabolic partial differential equation, together with appropriate side conditions. We explicitly solve this problem. We thus obtain a two-dimensional approximation for the steady state queue length probabilities.



Author(s):  
Lianjie Wang ◽  
Ping Yang ◽  
Di Lu ◽  
Wenbo Zhao

An optimization design of China supercritical water-cooled reactor (SCWR) with the rated electric power of 1000 MWe (CSR1000) conceptual core is proposed. Steady-state performance of the proposed core is then studied with the SCWR core steady-state analysis code system SNTA. These key parameters such as burnup performance, reactivity control capability, power distribution, maximum fuel cladding temperature, and maximum linear power density are analyzed. The relative coolant flow rate of the second flow path, which is suited with assembly power, is also presented. The study shows that the refueling cycle of CSR1000 core can be extended effectively under the optimization design.



1987 ◽  
Vol 109 (4) ◽  
pp. 704-708 ◽  
Author(s):  
D. M. Clarke ◽  
C. Fall ◽  
G. N. Hayden ◽  
T. S. Wilkinson

A steady-state analysis based on the short bearing approximation is presented for the cylindrical-spherical floating ring bearing, where the inner surface of the ring is cylindrical whilst the outer is spherical. Performance characteristics are compared with Li and Rohde’s theoretical work on the conventional cylindrical-cylindrical bearing. Excellent agreement is obtained, especially for (L/D) = 0.5. The present analysis of both the inner and outer lubricant films, the thickness of the latter varying axially, takes account of striated flow downstream of cavitation inception. The importance of this is demonstrated when considering power loss prediction.



1987 ◽  
Vol 109 (1) ◽  
pp. 19-23 ◽  
Author(s):  
J. Watton

The effect of a return line orifice on the steady-state performance and dynamic characteristics of a servovalve flapper/nozzle stage is investigated. Generalized design characteristics are initially developed and a specific application is then pursued by including torque motor dynamics. The possible cause of high frequency whistle within such systems is then discussed. A sufficient condition for valve whistle is established and shown to be critically dependent upon the supply pressure.



Author(s):  
M Malik

A new type of gas-lubricated floating-ring journal bearing in which the fixed bearing and the ring are both porous, has been conceived and analysed, theoretically, for the steady state characteristics. Bearing characteristics are presented against two design parameters, namely, clearances ratio and permeability parameter. The comparison of these characteristics with those of externally-pressurized plain porous journal bearings shows that the new bearing represents, with its steady state performance, a distinctly advanced bearing design.





Sign in / Sign up

Export Citation Format

Share Document