scholarly journals A morphospace of planktonic marine diatoms. I. Two views of disparity through time

Paleobiology ◽  
2015 ◽  
Vol 41 (1) ◽  
pp. 45-67 ◽  
Author(s):  
Benjamin Kotrc ◽  
Andrew H. Knoll

AbstractBoth molecular clocks and the first appearances of major groups in the fossil record suggest that most of the range of diatom morphologies observed today had evolved by the end of the Cretaceous Period. Despite this, a canonical reading of the Cenozoic fossil record suggests a dramatic rise in taxonomic diversity that can be interpreted as an explosion of morphological variety. We investigated this apparent discrepancy by using a discrete-character-based, empirical diatom morphospace, resolved by molecular phylogeny and by fossil occurrences through time. The morphospace shows little correspondence to phylogeny and little Cenozoic change in disparity as measured by mean pairwise distance. There is, however, an increase in the total volume of morphospace occupied. Although the increase in occupied volume through time ostensibly supports a conclusion of increasing morphological variety, sampling biases and other data suggest an underlying stationary pattern more consistent with molecular clock data.

2015 ◽  
Vol 89 (1) ◽  
pp. 148-167 ◽  
Author(s):  
Romain Jattiot ◽  
Arnaud Brayard ◽  
Emmanuel Fara ◽  
Sylvain Charbonnier

AbstractGladius-bearing coleoids are rare in the fossil record. For the Cretaceous period, these cephalopods are mainly recorded in a few Lagerstätten in Lebanon (Haqel, Hajoula, En Nammoura, and Sahel Aalma). Here, we study 16 specimens of gladius-bearing coleoids from these Upper Cretaceous Lebanese Lagerstätten to investigate their taxonomic diversity. Besides two species that were already reported (Dorateuthis syriacaandGlyphiteuthis libanotica), one new species is identified in the Cenomanian site of Hajoula:Rachiteuthis acutalin. sp., as well as another form ofGlyphiteuthisfrom En Nammoura. Several studied specimens exhibit well-preserved soft-part characters. Among them, we document for the first time two transverse rows of sessile suckers inD.syriacaand we confirm the absence of tentacles, as well as the presence of a crop in this species. This strongly supports the phylogenetic proximity ofD.syriacawith modern vampyropods rather than with modern decabrachians. In turn, the similarity in gladius morphology between this taxon and modern squids is regarded as convergent.


Paleobiology ◽  
2010 ◽  
Vol 36 (4) ◽  
pp. 519-533 ◽  
Author(s):  
Julio Aguirre ◽  
Francisco Perfectti ◽  
Juan C. Braga

When assessing the timing of branching events in a phylogeny, the most important tools currently recognized are a reliable molecular phylogeny and a continuous, relatively complete fossil record. Coralline algae (Rhodophyta, Corallinales, and Sporolithales) constitute an ideal group for this endeavor because of their excellent fossil record and their consistent phylogenetic reconstructions. We present the evolutionary history of the corallines following a novel, combined approach using their fossil record, molecular phylogeny (based on the 18S rDNA gene sequences of 39 coralline species), and molecular clocks. The order of appearance of the major monophyletic taxa of corallines in the fossil record perfectly matches the sequence of branching events in the phylogeny. We were able to demonstrate the robustness of the node ages in the phylogeny based on molecular clocks by performing an analysis of confidence intervals and maximum temporal ranges of three monophyletic groups of corallines (the families Sporolithaceae and Hapalidiaceae, as well as the subfamily Lithophylloideae). The results demonstrate that their first occurrences are close to their observed appearances, a clear indicator of a very complete stratigraphic record. These chronological data are used to confidently constrain the ages of the remaining branching events in the phylogeny using molecular clocks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iwona Kania-Kłosok ◽  
Wiesław Krzemiński ◽  
Antonio Arillo

AbstractFirst record of the genus Helius—long-rostrum cranefly from Maestrazgo Basin (eastern Spain, Iberian Penisula) is documented. Two new fossil species of the genus Helius are described from Cretaceous Spanish amber and compared with other species of the genus known from fossil record with particular references to these known from Cretaceous period. Helius turolensis sp. nov. is described from San Just amber (Lower Cretaceous, upper Albian) Maestrazgo Basin, eastern Spain, and Helius hispanicus sp. nov. is described from Álava amber (Lower Cretaceous, upper Albian), Basque-Cantabrian Basin, northern Spain. The specific body morphology of representatives of the genus Helius preserved in Spanish amber was discussed in relation to the environmental conditions of the Maestrazgo Basin and Basque-Cantabrian Basin in Cretaceous.


2015 ◽  
Vol 370 (1684) ◽  
pp. 20150046 ◽  
Author(s):  
Gregory A. Wray

The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.


Author(s):  
Jessica Uglesich ◽  
Robert J Gay ◽  
M. Allison Stegner ◽  
Adam K Huttenlocker ◽  
Randall B Irmis

Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated, BENM encompasses 1.3 million acres of land with exceptionally fossiliferous rock units. These units comprise a semi-continuous depositional record from the Pennsylvanian Period through the middle of the Cretaceous Period. Additional Quaternary and Holocene deposits are known from unconsolidated river gravels and cave deposits. The fossil record from BENM provides unique insights into several important paleontological periods of time, including the Pennsylvanian-Permian transition from fully aquatic to more fully terrestrial tetrapods; the rise of the dinosaurs following the Triassic-Jurassic extinction; and the response of ecosystems in dry climates to sudden temperature increases at the end of the last ice age and across the Holocene. While the paleontological resources of BENM are extensive, they have historically been under-studied. Here we summarize prior paleontological work in BENM and review the data used to support paleontological resource protection in the 2016 BENM proclamation.


PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0217959 ◽  
Author(s):  
Hussam Zaher ◽  
Robert W. Murphy ◽  
Juan Camilo Arredondo ◽  
Roberta Graboski ◽  
Paulo Roberto Machado-Filho ◽  
...  

1992 ◽  
Vol 6 ◽  
pp. 174-174 ◽  
Author(s):  
Conrad C. Labandeira

A considerable amount of research has been devoted toward evaluating the impact of the Cretaceous/Tertiary extinction on terrestrial life. This research has focused primarily on terrestrial vertebrates (primarily dinosaurs), marine invertebrates (notably molluscs and foraminifera), and to a lesser extent, terrestrial vascular plants. Terrestrial arthropods, especially insects, have seldomly been investigated, principally because of an alleged depauperate fossil record. Nevertheless, within the past two decades, some of the most productive and taxonomically diverse insect faunas have originated from Cretaceous amber- and compression-fossil deposits from every continent. Whereas it was once thought that the Cretaceous represented an unknown void in the understanding of insect evolution, now it appears that many extant lineages are traceable to Cretaceous precursors.Three approaches are available for determining the extent of the effect of the terminal Cretaceous extinction event on insects. Assessed for the interval from the Early Cretaceous to the Early Paleogene, these approaches are: (1) establishing the secular pattern of familial- and generic-based taxonomic diversity (macroevolution); (2) recognizing the persistence or eradication of specific insect/vascular plant interactions, such as leaf-mining, wood-boring and pollination (behavior); and (3) establishing temporal trends in the range of mouthpart design, as an indicator of faunal disparity or structural diversity (morphology). These three operationally separate but complimentary approaches allow the advantage of using distinct data bases to bear on a common question. The body-fossil record of insects provides primary data for the taxonomic expansion, steady-state, or contraction of insect faunas. The trace-fossil record of those insect interactions that are coevolved with plant hosts reveals the temporal continuity of highly stereotyped and taxonomically obligate behaviors. Both of these are contrasted to an assessment of insectan structural disparity, herein determined from a robust data base of 30 modern insect mouthpart classes that are traced back in geologic time.A preliminary analysis of each of these three approaches indicates broad agreement–namely that insects were not dramatically affected by the terminal Cretaceous extinction event. First, insects experienced only a modest decline in diversity, about 9 percent at the family level. (The generic level is not yet analyzed.) Second, although the data base is limited, there is no indication of the extinction of major leaf-mining, wood-boring, pollinating or other plant-specific behaviors at the end of the Cretaceous. In fact, leaf-mine morphologies for three lepidopteran families with Cretaceous occurrences are apparently indistinguishable from their modern descendants. Last, of the 30 mouthpart classes occurring during the Paleogene, 28 are represented during the Cretaceous. These data provide strong evidence for a largely uninterrupted continuum of insect faunas across the Cretaceous/Tertiary boundary as measured by taxonomic diversity, coevolved behavior, and structural disparity.Because of abundant and often intimate associations between insects and flowering plants, these results are consistent with a gradual and not catastrophic change in terrestrial floras across the Cretaceous/Tertiary boundary. Acceptance of a catastrophic extinction of flowering plants during the terminal Cretaceous would necessitate an unprecedented level of host-switching by coevolved insects on contemporaneous plants. This is unlikely, based on evidence from the prolific literature on modern insect/plant interactions. These studies indicate the ubiquity of obligate insect specificity for various secondary chemicals on many flowering plant species.


2015 ◽  
Vol 370 (1684) ◽  
pp. 20150038 ◽  
Author(s):  
Gregory D. Edgecombe ◽  
Xiaoya Ma ◽  
Nicholas J. Strausfeld

Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 ( ca 518 Ma), a dating that is compatible with molecular estimates for these splits.


Paleobiology ◽  
1975 ◽  
Vol 1 (4) ◽  
pp. 333-342 ◽  
Author(s):  
David M. Raup

Benthic ecologists have successfully applied rarefaction techniques to the problem of compensating for the effect of sample size on apparent species diversity (= species richness). The same method can be used in studies of diversity at higher taxonomic levels (families and orders) in the fossil record where samples represent world-wide distributions of species or genera over long periods of geologic time.Application of rarefaction to several large samples of post-Paleozoic echinoids (totaling 7,911 species) confirms the utility of the method. Rarefaction shows that the observed increase in the number of echinoid families since the Paleozoic is real in the sense that it cannot be explained solely by the increase in numbers of preserved species. There has been no statistically significant increase in the number of families since mid-Cretaceous, however. At the order level, echinoid diversity may have been nearly constant since late Triassic or early Jurassic.


Sign in / Sign up

Export Citation Format

Share Document