scholarly journals Unlocking the early fossil record of the arthropod central nervous system

2015 ◽  
Vol 370 (1684) ◽  
pp. 20150038 ◽  
Author(s):  
Gregory D. Edgecombe ◽  
Xiaoya Ma ◽  
Nicholas J. Strausfeld

Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 ( ca 518 Ma), a dating that is compatible with molecular estimates for these splits.

Author(s):  
Jaap Brink ◽  
Wah Chiu

The crotoxin complex is a potent neurotoxin composed of a basic subunit (Mr = 12,000) and an acidic subunit (M = 10,000). The basic subunit possesses phospholipase activity whereas the acidic subunit shows no enzymatic activity at all. The complex's toxocity is expressed both pre- and post-synaptically. The crotoxin complex forms thin crystals suitable for electron crystallography. The crystals diffract up to 0.16 nm in the microscope, whereas images show reflections out to 0.39 nm2. Ultimate goal in this study is to obtain a three-dimensional (3D-) structure map of the protein around 0.3 nm resolution. Use of 100 keV electrons in this is limited; the unit cell's height c of 25.6 nm causes problems associated with multiple scattering, radiation damage, limited depth of field and a more pronounced Ewald sphere curvature. In general, they lead to projections of the unit cell, which at the desired resolution, cannot be interpreted following the weak-phase approximation. Circumventing this problem is possible through the use of 400 keV electrons. Although the overall contrast is lowered due to a smaller scattering cross-section, the signal-to-noise ratio of especially higher order reflections will improve due to a smaller contribution of inelastic scattering. We report here our preliminary results demonstrating the feasability of the data collection procedure at 400 kV.Crystals of crotoxin complex were prepared on carbon-covered holey-carbon films, quench frozen in liquid ethane, inserted into a Gatan 626 holder, transferred into a JEOL 4000EX electron microscope equipped with a pair of anticontaminators operating at −184°C and examined under low-dose conditions. Selected area electron diffraction patterns (EDP's) and images of the crystals were recorded at 400 kV and −167°C with dose levels of 5 and 9.5 electrons/Å, respectively.


Author(s):  
Shu Yan ◽  
Yan Jiang ◽  
Yan Wang ◽  
Kaixuan Chen ◽  
Xudong Yan ◽  
...  

Abstract Purpose To report our experience using endoscopic intranasal incision reduction (EIIR) for nasal fractures and to assess effectiveness of the method. Methods 30 patients who underwent EIIR were retrospectively analysed. All the patients were examined by three-dimensional computed tomography (3D CT), acoustic rhinometry and rhinomanometry, preoperatively and postoperatively at 1 month. The visual analogue scale (VAS) was used to assess the preoperative aesthetics and nasal airflow satisfaction and at 1, 3 and 6 months postoperatively. VAS aesthetic satisfaction was also scored by two junior doctors. Results 3D CT showed that the fracture fragments fitted well in 30 patients postoperatively at 1 month. VAS aesthetics and nasal airflow scores were significantly improved postoperatively at 1, 3 and 6 months compared with preoperative scores (P < 0.01). The VAS aesthetic scores from the two surgeons were also significantly improved (P < 0.01). The minimal cross-sectional area increased from 0.39 ± 0.13 to 0.64 ± 0.13 (P < 0.001), the nasal volume increased from 4.65 ± 0.86 to 6.37 ± 0.94 (P < 0.001) and the total inspiratory airway resistance of the bilateral nasal cavity median decreased from 0.467 Pa/mL/s to 0.193 Pa/mL/s (P < 0.001). There were no technique-related intraoperative complications. Conclusion EIIR was a practical choice, and the aesthetics and nasal airflow were significantly improved in patients with overlapped and displaced bone fragments, patients with fractures of the frontal process of the maxilla (FFPM), patients who underwent failed CR and patients beyond the optimal temporal window.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


PalZ ◽  
2021 ◽  
Author(s):  
Carolin Haug ◽  
Joachim T. Haug

AbstractWhip spiders (Amblypygi), as their name suggests, resemble spiders (Araneae) in some aspects, but differ from them by their heart-shaped (prosomal) dorsal shield, their prominent grasping pedipalps, and their subsequent elongate pair of feeler appendages. The oldest possible occurrences of whip spiders, represented by cuticle fragments, date back to the Devonian (c. 385 mya), but (almost) complete fossils are known from the Carboniferous (c. 300 mya) onwards. The fossils include specimens preserved on slabs or in nodules (Carboniferous, Cretaceous) as well as specimens preserved in amber (Cretaceous, Eocene, Miocene). We review here all fossil whip spider specimens, figure most of them as interpretative drawings or with high-quality photographs including 3D imaging (stereo images) to make the three-dimensional relief of the specimens visible. Furthermore, we amend the list by two new specimens (resulting in 37 in total). The fossil specimens as well as modern whip spiders were measured to analyse possible changes in morphology over time. In general, the shield appears to have become relatively broader and the pedipalps and walking appendages have become more elongate over geological time. The morphological details are discussed in an evolutionary framework and in comparison with results from earlier studies.


1993 ◽  
Vol 317 ◽  
Author(s):  
N.A. Marks ◽  
P. Guan ◽  
D.R. Mckenzie ◽  
B.A. PailThorpe

ABSTRACTMolecular dynamics simulations of nickel and carbon have been used to study the phenomena due to ion impact. The nickel and carbon interactions were described using the Lennard-Jones and Stillinger-Weber potentials respectively. The phenomena occurring after the impact of 100 e V to 1 keV ions were studied in the nickel simulations, which were both two and three-dimensional. Supersonic focussed collision sequences (or focusons) were observed, and associated with these focusons were unexpected sonic bow waves, which were a major energy loss mechanism for the focuson. A number of 2D carbon films were grown and the stress in the films as a function of incident ion energy was Measured. With increasing energy the stress changed from tensile to compressive and reached a maximum around 50 eV, in agreement with experiment.


2015 ◽  
Vol 3 (18) ◽  
pp. 9438-9445 ◽  
Author(s):  
Chao Wu ◽  
Lijun Fu ◽  
Joachim Maier ◽  
Yan Yu

A novel free-standing cathode film consisting of hierarchically porous carbon-encapsulated sulfur has been designed and fabricated for Li–sulfur batteries.


Author(s):  
Sidney D’Mello ◽  
Eric Mathews ◽  
Lee McCauley ◽  
James Markham

We studied the characteristics of four commercially available RFID tags such as their orientation on an asset and their position in a three dimensional real world environment to obtain comprehensive data to substantiate a baseline for the use of RFID technology in a diverse supply chain management setting. Using RFID tags manufactured by four different vendors and a GHz Transverse Electromagnetic (GTEM) cell, in which an approximately constant electromagnetic (EM) field was maintained, we characterized the tags based on horizontal and vertical orientation on a simulated asset. With these baseline characteristics determined, we moved two of the four tags through a real world environment in three dimensions using an industrial robotic system to determine the effect of asset position in relation to the reader on tag readability. Combining the data collected over these two studies, we provide a rich analysis of the feasibility of asset tracking in a real world supply chain, where there would likely be multiple tag types. We offer fine grained analyses of the tag types and make recommendations for diverse supply chain asset tracking.


Author(s):  
Kotaro Kawai ◽  
Yuki Hirata ◽  
Hiroki Akasaka ◽  
Naoto Ohtake

Abstract Diamond-like carbon (DLC) films have excellent properties such as high hardness, low friction coefficient, high wear resistance, chemical inertness and so on. Because DLC film is considered as an effective coating material to improve their surface properties, this films are used in various applications such as parts for automobiles engines, hard disk surfaces, cutting tools and dies, and so on. DLC films consist of a mixture of sp2 bonded carbon atoms and sp3 bonded carbon atoms. Among them, ta-C film is known as the hardest and strongest film since it mainly consists of sp3 bonded carbon atoms. One of deposition methods to form ta-C is Filtered Cathodic Vacuum Arc (FCVA). The characteristic of this method is that it is possible to remove the droplets and form a high-quality film.. However, even though lots of mechanical components which require ta-C coating have three-dimensionally shapes, it is difficult to coat ta-C film three dimensionally by using FCVA process. At present, researches on 3D deposition of amorphous carbon films on three dimensional components is still insufficient, and investigation reports on the deposition mechanism and characterization of the deposited films are even more limited. In this study, we tried to deposit films on 3D components by the FCVA method and evaluated the microstructure and surface morphologies of films. Although films were coated successfully in the entire surfaces, different properties were showed depending on the location of components. These properties were investigated by Raman spectroscopy and laser microscope.


Sign in / Sign up

Export Citation Format

Share Document