scholarly journals On calibrating the completometer for the mammalian fossil record

Paleobiology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Indrė Žliobaitė ◽  
Mikael Fortelius

Abstract We know that the fossil record is incomplete. But how incomplete? Here we very coarsely estimate the completeness of the mammalian record in the Miocene, assuming that the duration of a mammalian species is about 1 Myr and the species diversity has stayed constant and is structurally comparable to the taxonomic diversity today. The overall completeness under these assumptions appears to be around 4%, but there are large differences across taxonomic groups. We find that the fossil record of proboscideans and perissodactyls as we know it for the Miocene must be close to complete, while we might know less than 15% of the species of artiodactyl or carnivore fossil species and only about 1% of primate species of the Miocene. The record of small mammals appears much less complete than that of large mammals.

Paleobiology ◽  
1975 ◽  
Vol 1 (4) ◽  
pp. 333-342 ◽  
Author(s):  
David M. Raup

Benthic ecologists have successfully applied rarefaction techniques to the problem of compensating for the effect of sample size on apparent species diversity (= species richness). The same method can be used in studies of diversity at higher taxonomic levels (families and orders) in the fossil record where samples represent world-wide distributions of species or genera over long periods of geologic time.Application of rarefaction to several large samples of post-Paleozoic echinoids (totaling 7,911 species) confirms the utility of the method. Rarefaction shows that the observed increase in the number of echinoid families since the Paleozoic is real in the sense that it cannot be explained solely by the increase in numbers of preserved species. There has been no statistically significant increase in the number of families since mid-Cretaceous, however. At the order level, echinoid diversity may have been nearly constant since late Triassic or early Jurassic.


Rodriguésia ◽  
2017 ◽  
Vol 68 (5) ◽  
pp. 2001-2017 ◽  
Author(s):  
Ana Carolina Srbek-Araujo ◽  
Ariana Pignaton Gnocchi ◽  
Lillian Jardim Guimarães ◽  
James Joseph Roper

Abstract Here we present a brief review on how the loss of fauna can cause a concomitant loss in plant diversity in the state of Espírito Santo, focusing on the context of current habitat loss and fragmentation and the importance of the mutualistic interactions between animals and plants. We discuss the main groups of fauna that are involved in pollination and seed dispersal, especially those that are found in the state of Espírito Santo. These ecological processes were selected due to their relevance for population dynamics and population genetics of plants. In Atlantic Forest, important pollinators include a variety of insects (especially bees), along with many species of birds and bats. Seed dispersers also include many taxonomic groups, from ants to large mammals. Each of these groups contribute in their own unique and complementary, rather than redundant, way. Habitat fragmentation causes a variety of problems for habitat integrity and the reduction of species diversity, and smaller fragments tend to support fewer species and smaller populations. As a consequence, pollinators and seed dispersers are lost or their activity is reduced, thereby reducing even further the reproductive success of the plants, leading to a vicious cycle of reduction of species diversity.


2021 ◽  
pp. 91-142
Author(s):  
Thodoris Argyriou

AbstractThe nowadays hyper-diverse clade of Actinopterygii (ray-finned bony fishes) is characterized by a long evolutionary history and an extremely rich global fossil record. This work builds upon 170 years of research on the fossil record of this clade in Greece. The taxonomy and spatiotemporal distribution of the ray-finned fish record of Greece are critically revisited and placed in an updated systematic and stratigraphic framework, while some new fossil data and interpretations are also provided. Greece hosts diverse ray-finned fish assemblages, which range in age from Lower Jurassic to Quaternary. Most known assemblages are of Miocene–Pliocene age and of marine affinities. A minimum of 32 families, followed by at least 34 genera and 22 species, have been recognized in Greece. From originally two named genera and seven species, only two fossil species, established on Greek material, are accepted as valid. Additional taxonomic diversity is anticipated, pending detailed investigations. From a taxonomic perspective, previous knowledge lies on preliminary or authoritative assessments of fossils, with many decades-old treatments needing revision. Little is known about Mesozoic–early Cenozoic occurrences or freshwater assemblages. Given the proven potential of the Greek fossil record, this chapter stresses the need for additional exploration and the establishment of permanent, curated collections of fossil fishes in Greek institutions. Directions for future research are discussed.


Paleobiology ◽  
1986 ◽  
Vol 12 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Paul L. Koch

Mammalian species often exhibit clinal geographic variation in body size: individuals tend to be larger in areas with lower mean annual temperature. Climatic change involving increasing or decreasing mean annual temperature may cause clines to shift geographically, resulting in a phenotypic shift at all affected locales within a species' range. I assess the potential of shifting geographic clines to produce morphological trends in the fossil record. Five extant North American mammalian species (Didelphis virginiana, Mephitis mephitis, Odocoileus virginianus, Scalopus aquaticus, and Sciurus carolinensis) are examined to quantify size change along latitudinal clines and to estimate the geographic range and temperature difference commonly associated with a given difference in body size. Relative to body size, the observed size range of skeletal characters within each of these five species is comparable to that seen in a much larger sample of North American mammals. Thus patterns of variation documented for the five species may be used to assess the likelihood of dine translocation as an explanation of size change in the mammalian fossil record. As a case study, I examine three lineages from the Early Eocene of the Bighorn Basin, Wyoming. I determine that size change in these chronoclines represents evolutionary change and is not merely the result of shifting geographic clines.


Paleobiology ◽  
1991 ◽  
Vol 17 (3) ◽  
pp. 246-265 ◽  
Author(s):  
Lawrence J. Flynn ◽  
Richard H. Tedford ◽  
Qiu Zhanxiang

The Late Neogene vertebrate fossil record from Yushe Basin presents multiple, superposed assemblages from a single area, spanning roughly the interval of 6–2 Ma. Both large and small mammals show peak species richness in the middle Pliocene but indicate relative faunal stability throughout the Pliocene. Large mammals show turnover, especially extinction, around 5 and 2.5 Ma. Small mammals indicate change (over half of the species and several genera), as well as turnover at the species level, between 4 and 3.4 Ma. The loosely controlled dating of these events does not disprove hypothetical correlation with events in North America and with global climatic shifts. Elements that lack Yushe antecedents, some being long-distance dispersers, appear throughout the section, but with little effect on the resident assemblage. First records of well-documented immigrants (from North America, Europe, Africa, southern Asia, or high latitudes) generally do not coincide with ecomorph extinctions. Early Pliocene exchange between Asia and North America appears to have been balanced in both directions and involved a small proportion of the fauna. Immigration probably was opportunistic and contributed to faunal enrichment. We interpret the Yushe Pliocene mammalian assemblages as representing a fauna that was stable from ca. 5 to 2.5 Ma and changed mainly by additions and congeneric species substitutions.


2020 ◽  
Vol 8 ◽  
Author(s):  
Kaviarasu Munian ◽  
Shahfiz Azman ◽  
Norhazwani Ruzman ◽  
Noor Fauzi ◽  
Alwani Zakaria

Volant and non-volant small mammals from three forest reserves, located inside and outside Selangor State Park, Malaysia, were trapped and documented. A total of five-line transects, each 200 m long and a total of 100 collapsible cage traps, three harp traps and ten mist nets were deployed at each study site to capture rodents and bats species. The presence of 47 species of volant and non-volant mammals was documented with the highest abundant species being Leopoldamys sabanus (n = 61). The Family Vespertilionidae was the most diverse, while Muridae was the most abundant species. Diversity indices have shown forest reserves - Gading Forest Reserve (FR) and Bukit Kutu FR – located in the State Park, have a higher species composition than the impaired adjacent forest reserve, Bukit Tarek FR extension. The taxonomic diversity and taxonomic distinctness of the three forest reserves ranged between 2.433 and 2.610, while the taxonomic distinctness values ranged between 2.638 and 2.748. Even though Gading FR recorded the highest number of species diversity, the Chao 1 diversity estimator and the rarefaction accumulation curve indicated that Bukit Kutu comprised more species. Comparisons between other state parks and national parks in Peninsular Malaysia indicated that Selangor State Park indeed harbours relatively more species of small mammals. Northern Selangor State Park and adjacent forest should be recognised as a conservation priority area, although there are comparatively more species harboured in other regions of the State Park. With the current information on fauna diversity, proper management should be formulated to preserve the existing ecosystems in order to ensure the continuity of fauna diversity in Malaysia.


Ekologija ◽  
2010 ◽  
Vol 56 (3) ◽  
pp. 110-115 ◽  
Author(s):  
Paulius Alejūnas ◽  
Vitalijus Stirkė

2021 ◽  
Vol 168 (6) ◽  
Author(s):  
Ann Bucklin ◽  
Katja T. C. A. Peijnenburg ◽  
Ksenia N. Kosobokova ◽  
Todd D. O’Brien ◽  
Leocadio Blanco-Bercial ◽  
...  

AbstractCharacterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iwona Kania-Kłosok ◽  
Wiesław Krzemiński ◽  
Antonio Arillo

AbstractFirst record of the genus Helius—long-rostrum cranefly from Maestrazgo Basin (eastern Spain, Iberian Penisula) is documented. Two new fossil species of the genus Helius are described from Cretaceous Spanish amber and compared with other species of the genus known from fossil record with particular references to these known from Cretaceous period. Helius turolensis sp. nov. is described from San Just amber (Lower Cretaceous, upper Albian) Maestrazgo Basin, eastern Spain, and Helius hispanicus sp. nov. is described from Álava amber (Lower Cretaceous, upper Albian), Basque-Cantabrian Basin, northern Spain. The specific body morphology of representatives of the genus Helius preserved in Spanish amber was discussed in relation to the environmental conditions of the Maestrazgo Basin and Basque-Cantabrian Basin in Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document