scholarly journals A plausible mechanism for longitudinal lock-in of the plant cortical microtubule array after light-induced reorientation

2021 ◽  
Vol 2 ◽  
Author(s):  
Marco Saltini ◽  
Bela M. Mulder

Abstract The light-induced reorientation of the cortical microtubule array in dark-grown Arabidopsis thaliana hypocotyl cells is a striking example of the dynamical plasticity of the microtubule cytoskeleton. A consensus model, based on katanin-mediated severing at microtubule crossovers, has been developed that successfully describes the onset of the observed switch between a transverse and longitudinal array orientation. However, we currently lack an understanding of why the newly populated longitudinal array direction remains stable for longer times and re-equilibration effects would tend to drive the system back to a mixed orientation state. Using both simulations and analytical calculations, we show that the assumption of a small orientation-dependent shift in microtubule dynamics is sufficient to explain the long-term lock-in of the longitudinal array orientation. Furthermore, we show that the natural alternative hypothesis that there is a selective advantage in severing longitudinal microtubules, is neither necessary nor sufficient to achieve cortical array reorientation, but is able to accelerate this process significantly.

2020 ◽  
Author(s):  
Marco Saltini ◽  
Bela M. Mulder

The light-induced reorientation of the cortical microtubule array in dark-grown A. thaliana hypocotyl cells is a striking example of the dynamical plasticity of the microtubule cytoskeleton. A consensus model, based on katanin-mediated severing at microtubule crossovers, has been developed that successfully describes the onset of the observed switch between a transverse and longitudinal array orientation. However, we currently lack an understanding of of why the newly populated longitudinal array direction remains stable for longer times, when the initial trigger for the reorientation has died out, and re-equilibration effects would tend to drive the system back to a mixed orientation state. Using both simulations and analytical calculations, we show that the assumption of a small orientation-dependent shift in microtubule dynamics is sufficient to explain the long term lock-in of the longitudinal array orientation. Furthermore, we show that the natural alternative hypothesis that there is a selective advantage in severing longitudinal microtubules, is neither necessary nor sufficient to achieve cortical array reorientation, but is able to accelerate this process significantly.


2006 ◽  
Vol 17 (3) ◽  
pp. 1298-1305 ◽  
Author(s):  
Ram Dixit ◽  
Eric Chang ◽  
Richard Cyr

The plant cortical microtubule array is a unique acentrosomal array that is essential for plant morphogenesis. To understand how this array is organized, we exploited the microtubule (+)-end tracking activity of two Arabidopsis EB1 proteins in combination with FRAP (fluorescence recovery after photobleaching) experiments of GFP-tubulin to examine the relationship between cortical microtubule array organization and polarity. Significantly, our observations show that the majority of cortical microtubules in ordered arrays, within a particular cell, face the same direction in both Arabidopsis plants and cultured tobacco cells. We determined that this polar microtubule coalignment is at least partially due to a selective stabilization of microtubules, and not due to a change in microtubule polymerization rates. Finally, we show that polar microtubule coalignment occurs in conjunction with parallel grouping of cortical microtubules and that cortical array polarity is progressively enhanced during array organization. These observations reveal a novel aspect of plant cortical microtubule array organization and suggest that selective stabilization of dynamic cortical microtubules plays a predominant role in the self-organization of cortical arrays.


Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
Piter Bijma ◽  
John A Woolliams

Abstract A method to predict long-term genetic contributions of ancestors to future generations is studied in detail for a population with overlapping generations under mass or sib index selection. An existing method provides insight into the mechanisms determining the flow of genes through selected populations, and takes account of selection by modeling the long-term genetic contribution as a linear regression on breeding value. Total genetic contributions of age classes are modeled using a modified gene flow approach and long-term predictions are obtained assuming equilibrium genetic parameters. Generation interval was defined as the time in which genetic contributions sum to unity, which is equal to the turnover time of genes. Accurate predictions of long-term genetic contributions of individual animals, as well as total contributions of age classes were obtained. Due to selection, offspring of young parents had an above-average breeding value. Long-term genetic contributions of youngest age classes were therefore higher than expected from the age class distribution of parents, and generation interval was shorter than the average age of parents at birth of their offspring. Due to an increased selective advantage of offspring of young parents, generation interval decreased with increasing heritability and selection intensity. The method was compared to conventional gene flow and showed more accurate predictions of long-term genetic contributions.


Author(s):  
Goknur Arzu Akyuz ◽  
Mohammad Rehan

Cloud concept is directly related with the beyond-ERP integrity and collaboration across a number of heterogeneous Supply Chain (SC) partner infrastructures. The technology enables partners to form a collaborative SC community without the burden of significant IT investment. Cloud applications offer significant opportunities from SC perspective, and the assimilation of the Cloud Technology is not complete yet in the Supply Chain domain. It also involves various barriers from implementation perspective, as well as the concerns related with vendor lock-in, security, reliability, privacy and data ownership. This chapter provides a comprehensive coverage of the opportunities and barriers as well as the generic treatment from SC perspective. It also highlights how the cloud technology represents a perfect fit with the ideas of ‘Collaborative Supply Chains', ‘Business Process Outsourcing' and ‘long-term strategic partnerships, which are the key themes characterizing the Supply Chains of today's era. This chapter reveals that the intersection of the topics ‘Cloud computing' and ‘Supply Chain' is a promising area for further research. Further studies in a multi-partner setting with respect to a variety of configurations, case studies and applications, as well as the security, reliability and data ownership issues are justified.


1974 ◽  
Vol 20 (8) ◽  
pp. 1009-1012 ◽  
Author(s):  
Robert L Berger ◽  
Walter S Friauf ◽  
Horace E Cascio

Abstract A precision thermistor bridge and thermistor is described for use in a thermal titration calorimeter or a high-speed stopped- or continuous-flow calorimeter of the Roughton type. These are compared and evaluated with regard to several other types of detectors, including the platinum resistance thermometer, thermocouple, transistor thermometer, and capacitance thermometers. At this time the best detection for our purpose seems to be a specially constructed 20-100 kΩ thermistor used in conjunction with a new ac lock-in amplifier bridge. The sensitivity of the system is equivalent to a peak-to-peak noise of 25 x 10-6 °C, with a 100-ms time constant and 1 µW power dissipation in the thermistor. Long-term drift of the bridge, without an oven, was 1 x 10-6 °C/min.


2004 ◽  
Vol 164 (4) ◽  
pp. 501-507 ◽  
Author(s):  
Eva Herker ◽  
Helmut Jungwirth ◽  
Katharina A. Lehmann ◽  
Corinna Maldener ◽  
Kai-Uwe Fröhlich ◽  
...  

During the past years, yeast has been successfully established as a model to study mechanisms of apoptotic regulation. However, the beneficial effects of such a cell suicide program for a unicellular organism remained obscure. Here, we demonstrate that chronologically aged yeast cultures die exhibiting typical markers of apoptosis, accumulate oxygen radicals, and show caspase activation. Age-induced cell death is strongly delayed by overexpressing YAP1, a key transcriptional regulator in oxygen stress response. Disruption of apoptosis through deletion of yeast caspase YCA1 initially results in better survival of aged cultures. However, surviving cells lose the ability of regrowth, indicating that predamaged cells accumulate in the absence of apoptotic cell removal. Moreover, wild-type cells outlast yca1 disruptants in direct competition assays during long-term aging. We suggest that apoptosis in yeast confers a selective advantage for this unicellular organism, and demonstrate that old yeast cells release substances into the medium that stimulate survival of the clone.


2018 ◽  
Vol 50 (1) ◽  
Author(s):  
David M. Howard ◽  
Ricardo Pong-Wong ◽  
Pieter W. Knap ◽  
Valentin D. Kremer ◽  
John A. Woolliams

2012 ◽  
Vol 279 (1747) ◽  
pp. 4596-4603 ◽  
Author(s):  
Peter Taylor ◽  
Wes Maciejewski

We study the evolution of a pair of competing behavioural alleles in a structured population when there are non-additive or ‘synergistic’ fitness effects. Under a form of weak selection and with a simple symmetry condition between a pair of competing alleles, Tarnita et al. provide a surprisingly simple condition for one allele to dominate the other. Their condition can be obtained from an analysis of a corresponding simpler model in which fitness effects are additive. Their result uses an average measure of selective advantage where the average is taken over the long-term—that is, over all possible allele frequencies—and this precludes consideration of any frequency dependence the allelic fitness might exhibit. However, in a considerable body of work with non-additive fitness effects—for example, hawk–dove and prisoner's dilemma games—frequency dependence plays an essential role in the establishment of conditions for a stable allele-frequency equilibrium. Here, we present a frequency-dependent generalization of their result that provides an expression for allelic fitness at any given allele frequency p . We use an inclusive fitness approach and provide two examples for an infinite structured population. We illustrate our results with an analysis of the hawk–dove game.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 242-242
Author(s):  
Jennifer E Adair ◽  
Lauren E Schefter ◽  
Daniel R Humphrys ◽  
Kevin G Haworth ◽  
Jonah D Hocum ◽  
...  

Abstract Long-term clonal tracking studies utilizing hematopoietic stem and progenitor cells (HSPCs) in nonhuman primates receiving myeloablative transplantation demonstrate a successive pattern of repopulation: short-term repopulating cells are succeeded by long-term clones. However, the duration of short-term repopulation and the numbers of clones contributing to either short or long-term repopulation are unclear. Here, we tracked >11,000 unique clones in 8 pigtail macaques for up to 9 years following myeloablative transplantation with autologous, lentivirus gene-modified CD34+ HSPCs. Seven of these animals received cells expressing the P140K mutant methylguanine methyltransferase transgene, which is resistant to the combination of O6-benzylguanine (O6BG) and bis-chloroethylnitrosourea (BCNU) chemotherapy, thus conferring a selective advantage to gene-modified cells in vivo. After transplantation and before in vivo selection with O6BG/BCNU, we observed a successive pattern of hematopoietic reconstitution, with short-term clones declining within 100 days after transplantation. Within the first year after transplant, the percent of persistent clones varied from animal-to-animal, ranging from 8% to 54% of clones detected at a >1% frequency, and remained stable in the absence of selective pressure. Importantly, when animals engrafted with P140K-expressing cells were administered O6BG/BCNU we observed novel clonal patterns, which directly correlated with transplanted cell dose and time of chemotherapy administration after transplant. In all animals, chemotherapy induced emergence of previously undetected clones. In animals receiving ≤12x106 CD34+ cells/kg at the time of transplant (n = 4), chemotherapy also induced a re-emergence of previously declined short-term repopulating clones or a stabilization (i.e. decreased fluctuation) of repopulating clones identified between 100 days and 1 year after transplant. However, in animals receiving robust cell doses, ≥35x106 CD34+ cells/kg (n = 2), chemotherapy more than 1 year after transplant induced a completely novel clonal repertoire. In one animal receiving 22x106 CD34+ cells/kg at transplant, chemotherapy administration beginning <1 year (253 days) after transplant induced clonal stability, which was maintained through two additional chemotherapy treatments. These data suggest that some short-term repopulating clones may have long-term repopulation ability, but revert to a dormant phase within the first year after transplant. Additionally, these data indicate that transplant of excess repopulating cells results in early dormancy of a large proportion of repopulating clones. Together, these findings suggest that previous estimates of HSPC frequency based on clone tracking are an underestimate of true graft repopulation potential. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document