Genetic and Environmental Variation of Ridge-Counts on Fingers, Palms, Soles and Toes: A Twin Study

1990 ◽  
Vol 33 (4) ◽  
pp. 531-546 ◽  
Author(s):  
R.L. Jantz ◽  
H. Brehme ◽  
K. Bender

AbstractA multivariate procedure for estimating heritable components from twin data was applied to ridge counts obtained from the entire dermatoglyphic system. Covariance matrices of MZ and DZ within-pair differences were used to estimate genetic correlation matrices for 20 finger ridge counts, 6 palmar interdigital counts, 20 toe counts, 4 hallucal counts, and 6 sole interdigital counts. The proportion of genetic variation was found to be greater in ridge counts of patterns than in ridge counts of interdigital areas. On digits, finger counts are more highly heritable than toe counts. Each of the dermatoglyphic areas yielded several independent genetic components, ranging from general to specific. Environmental variation was found to be local and to frequently involve reciprocal interaction between twin pairs.

2014 ◽  
Vol 112 (11) ◽  
pp. 1036-1043 ◽  
Author(s):  
Geórgia Pena ◽  
Andrey Ziyatdinov ◽  
Alfonso Buil ◽  
Sonia López ◽  
Jordi Fontcuberta ◽  
...  

SummaryThrombosis and obesity are complex epidemiologically associated diseases. The mechanism of this association is not yet understood. It was the objective of this study to identify genetic components of body mass index (BMI) and their possible role in the risk of thromboembolic disease. With the self-reported BMI of 397 individuals from 21 extended families enrolled in the GAIT (Genetic Analysis of Idiopathic Thrombophilia) Project, we estimated the heritability of BMI and the genetic correlation with the risk of thrombosis. Subjects were genotyped for an autosomal genome-wide scan with 363 highly-informative DNA markers. Univariate and bivariate multipoint linkage analyses were performed. The heritability for BMI was 0.31 (p= 2.9×10–5). Thromboembolic disease (including venous and arterial) and BMI had a significant genetic correlation (ρG= 0.54, p= 0.005). Two linkage signals for BMI were obtained, one at 13q34 (LOD= 3.36, p= 0.0004) and other at 2q34, highly suggestive of linkage (LOD= 1.95). Bivariate linkage analysis with BMI and thrombosis risk also showed a significant signal at 13q34 (LOD= 3), indicating that this locus influences at the same time normal variation in the BMI phenotype as well as susceptibility to thrombosis. In conclusion, BMI and thrombosis are genetically correlated. The locus 13q34, which showed pleiotropy with both phenotypes, contains two candidate genes, which may explain our linkage pleiotropic signal and deserve further investigation as possible risk factors for obesity and thrombosis.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012919
Author(s):  
Yanjun Guo ◽  
Iyas Daghlas ◽  
Padhraig Gormley ◽  
Franco Giulianini ◽  
Paul M Ridker ◽  
...  

Background and Objective:To evaluate phenotypic and genetic relationships between migraine and lipoprotein subfractions.Methods:We evaluated phenotypic associations between migraine and 19 lipoprotein subfractions measures in the Women’s Genome Health Study (WGHS, N=22,788). We then investigated genetic relationships between these traits using summary statistics from the International Headache Genetics Consortium (IHGC) for migraine (Ncase=54,552, Ncontrol=297,970) and combined summary data for lipoprotein subfractions (N up to 47,713).Results:There was a significant phenotypic association (odds ratio=1.27 [95% confidence interval:1.12-1.44]) and a significant genetic correlation at 0.18 (P=0.001) between migraine and triglyceride-rich lipoproteins (TRLP) concentration but not for LDL or HDL subfractions. Mendelian randomization (MR) estimates were largely null implying that pleiotropy rather than causality underlies the genetic correlation between migraine and lipoprotein subfractions. Pleiotropy was further supported in cross-trait meta-analysis revealing significant shared signals at four loci (chr2p21 harboring THADA, chr5q13.3 harboring HMGCR, chr6q22.31 harboring HEY2, and chr7q11.23 harboring MLXIPL) between migraine and lipoprotein subfractions. Three of these loci were replicated for migraine (P<0.05) in a smaller sample from the UK Biobank. The shared signal at chr5q13.3 colocalized with expression of HMGCR, ANKDD1B, and COL4A3BP in multiple tissues.Conclusions:The current study supports the association between certain lipoprotein subfractions, especially for TRLP, and migraine in populations of European ancestry. The corresponding shared genetic components may be help identify potential targets for future migraine therapeutics.Classification of Evidence:This study provides Class I evidence that migraine is significantly associated with some lipoprotein subfractions.


1998 ◽  
Vol 34 (6) ◽  
pp. 1400-1413 ◽  
Author(s):  
Deborah Finkel ◽  
Nancy L. Pedersen ◽  
Robert Plomin ◽  
Gerald E. McClearn

2016 ◽  
Author(s):  
Eleanor K. O’Brien ◽  
Megan Higgie ◽  
Alan Reynolds ◽  
Ary A. Hoffmann ◽  
Jon R. Bridle

ABSTRACTPredicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species Distribution Models (SDMs) use the current relationship between environmental variation and species’ abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (1) that the relationship of environment with abundance or fitness is constant throughout a species’ range and will remain so in future, and (2) that abiotic factors (e.g. temperature, humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high altitude sites, and declined towards warmer, low altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high altitude than low altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (1) measuring genetic variation of key traits under ecologically relevant conditions, and (2) considering the effect of biotic interactions when predicting species’ responses to environmental change.


Genetics ◽  
1974 ◽  
Vol 78 (2) ◽  
pp. 757-770
Author(s):  
Philip W Hedrick

ABSTRACT The conditions for a stable polymorphism and the equilibrium gene frequency in an infinite population are compared when there is spatial or temporal environmental heterogeneity for the absolute dominance model. For temporal variation the conditions for stability are more restrictive and the equilibrium gene frequency is often at a low gene frequency. In a finite population, temporal environmental heterogeneity for the absolute dominance model was found to be quite ineffective in maintaining genetic variation and is often less effective than no selection at all. For comparison, the maximum maintenance for temporal variation is related to the overdominant model. In general, cyclic environmental variation was found to be more effective at maintaining genetic variation than where the environment varies stochastically. The importance of temporal environmental variation and the maintenance of genetic variation is discussed.


1988 ◽  
pp. 275-303 ◽  
Author(s):  
Janis Antonovics ◽  
Norman C. Ellstrand ◽  
Robert N. Brandon

2020 ◽  
Vol 23 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Jeffrey M. Craig ◽  
Lucas Calais-Ferreira ◽  
Mark P. Umstad ◽  
Dedra Buchwald

AbstractIn 1984, Hrubec and Robinette published what was arguably the first review of the role of twins in medical research. The authors acknowledged a growing distinction between two categories of twin studies: those aimed at assessing genetic contributions to disease and those aimed at assessing environmental contributions while controlling for genetic variation. They concluded with a brief section on recently founded twin registries that had begun to provide unprecedented access to twins for medical research. Here we offer an overview of the twin research that, in our estimation, best represents the field has progress since 1984. We start by summarizing what we know about twinning. We then focus on the value of twin study designs to differentiate between genetic and environmental influences on health and on emerging applications of twins in multiple areas of medical research. We finish by describing how twin registries and networks are accelerating twin research worldwide.


1962 ◽  
Vol 42 (2) ◽  
pp. 240-251 ◽  
Author(s):  
H. T. Fredeen ◽  
J. A. Newman

Genetic parameters for rib and vertebral number in swine were estimated from data for 4,219 pigs produced by 78 sires and 359 dams of the Lacombe breed. Regressions of offspring on mid-parent were.599 ±.017 for vertebral number and.734 ±.020 for rib number and the corresponding full sib correlations estimated from the analysis of variance were.591 ±.071 and.591 ±.060. The genetic correlation between these two skeletal traits was estimated as.813 ±.022 by the regression of offspring on mid-parent and.792 ±.016 by the analysis of components of covariance.Continuous genetic variation for both traits was demonstrated. The modal phenotype (i.e., 16 pairs of ribs and 22 vertebrae) produced progeny more uniform for both traits than did parents of non-modal phenotypes. Bilateral asymmetry (within-pig variance) was also least among progeny of "modal" parents.


BMJ Open ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. e017889 ◽  
Author(s):  
Chao Tong ◽  
Li Wen ◽  
Yinyin Xia ◽  
Pamela Leong ◽  
Lan Wang ◽  
...  

IntroductionNon-communicable diseases (NCD) now represent the major burden of adverse health in most countries. It is clear that much of the risk of such conditions begins very early in life, potentially in utero. Given their complex aetiology, an understanding of the origins of NCD requires an in-depth analysis of the interplay between genetic variation and environment, preferably over time. For decades, twin studies have played a key role in understanding such traits. Their strength lies in the ability to disentangle genetic and environmental factors that contribute to a phenotype. This is done by comparing genetically identical monozygotic (MZ) with dizygotic twins, who share on average 50% of genetic variation, or by comparing MZ twins within a pair. This study aims to determine the relative contributions of genes and environment to early-onset intermediate phenotypes related to later adult onset disease (such as growth and neurodevelopment) and to identify specific biomarkers and time points for emergence of phenotypes from infancy, largely independent of underlying genetic factors.Methods/designThe Chongqing Longitudinal Twin Study (LoTiS) will recruit 300 women pregnant with twins, enriched for MZ pregnancies, with follow-up to 3 years of age. Data collection will be undertaken at key time points in gestation (×3), at delivery and postnatally (×9). Maternal and infant biospecimens including blood, urine, hair, nails and buccal swabs along with measures such as fetal scans and body measurements will be collected. Additional information from questionnaires and medical records includes pregnancy, diet, sociodemographics, maternal stress, and infant growth and neurodevelopment.Ethics and disseminationThis study has been approved by the Ethics Committee of Chongqing Medical University (record no: 201530) and has been registered with the Chinese Clinical Trial Registry (registry no: ChiCTR-OOC-16008203). Results of the recruitment and all subsequent analyses will be submitted for publication in peer-reviewed journals.Trial registration numberChiCTR-OOC-16008203; Results.


Genetics ◽  
1986 ◽  
Vol 112 (3) ◽  
pp. 717-725
Author(s):  
A Gimelfarb

ABSTRACT A model with two diallelic loci controlling two additive quantitative characters is suggested. One of the loci has a similar effect on both characters, whereas the second locus has an antagonistic effect on the two characters. Both characters experience direct stabilizing selection. The model yields a stable polymorphic state, with both characters maintaining genetic variation. The genetic correlation between the characters at the equilibrium is zero, in spite of the pleiotropic effects of the loci controlling them.


Sign in / Sign up

Export Citation Format

Share Document