Two-channel pitch/yaw missile autopilot design using arbitrary order sliding modes based pole placement

2015 ◽  
Vol 119 (1216) ◽  
pp. 765-779
Author(s):  
B. Kada

AbstractThe paper presents a new missile autopilot system design. The design is achieved through the pole-placement in quasi-continuous high-order sliding mode gains adjustment. Enhanced performance, strong robustness and smooth control are obtained through arbitrary increase of the number of non-oscillatory stable poles. The target application of this technique the two-channel pitch/yaw missile autopilot system is considered. Numerical simulations indicate that the arbitrary-order sliding modes based pole placement’s performance compares favourably against recently proposed high-order pole placement schemes.The proposed arbitrary-order pole placement scheme presents a promising design tool for finite-time stabilisation and control of uncertain multivariable systems.

2016 ◽  
Vol 6 (2) ◽  
pp. 11 ◽  
Author(s):  
Khaled M Goher

<p class="1Body">This paper presents mathematical modelling and control of a two-wheeled single-seat vehicle. The design of the vehicle is inspired by the Personal Urban Mobility and Accessibility (PUMA) vehicle developed by General Motors® in collaboration with Segway®. The body of the vehicle is designed to have two main parts. The vehicle is activated using three motors; a linear motor to activate the upper part in a sliding mode and two DC motors activating the vehicle while moving forward/backward and/or manoeuvring. Two stages proportional-integral-derivative (PID) control schemes are designed and implemented on the system models. The state space model of the vehicle is derived from the linearized equations. Controller based on the Linear Quadratic Regulator (LQR) and the pole placement techniques are developed and implemented. Further investigation of the robustness of the developed LQR and the pole placement techniques is emphasized through various experiments using an applied impact load on the vehicle.</p>


Author(s):  
Ali Jaafar ◽  
Emmanuel Godoy ◽  
Pierre Lefranc ◽  
Xuefang Lin Shi ◽  
Akram Fayaz ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Kang Chen ◽  
Bin Fu ◽  
Yuening Ding ◽  
Jie Yan

This paper focuses on the integrated guidance and control (IGC) method applied in the interception of maneuvering near space hypersonic vehicles using the homogeneous high order sliding mode (HOSM) approach. The IGC model is derived by combining the target-missile relative motion and dynamic equations. Then, a fourth-order sliding mode controller is implemented in the augmented IGC model. To estimate the high order derivatives of the sliding manifold which is required in the HOSM method, an Arbitrary Order Robust Exact Differentiator is presented. At last, the idea of virtual control is introduced to alleviate the chattering of the control input without using any saturation functions which may lead to a loss of the robustness. And the stability of the closed-loop system with presented fourth-order homogeneous HOSM controller is also proved theoretically. Finally, simulation results are provided and analyzed to demonstrate the effectiveness of the proposed method in three typical engagement scenarios.


Author(s):  
Oscar Barambones ◽  
José A. Cortajarena ◽  
Isidro Calvo ◽  
José M. Gonzalez de Durana ◽  
Patxi Alkorta ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2927 ◽  
Author(s):  
Yexing Wang ◽  
Humin Lei ◽  
Jikun Ye ◽  
Xiangwei Bu

This paper investigates the design of a missile seeker servo system combined with a guidance and control system. Firstly, a complete model containing a missile seeker servo system, missile guidance system, and missile control system (SGCS) was creatively proposed. Secondly, a designed high-order tracking differentiator (HTD) was used to estimate states of systems in real time, which guarantees the feasibility of the designed algorithm. To guarantee tracking precision and robustness, backstepping sliding-mode control was adopted. Aiming at the main problem of projectile motion disturbance, an adaptive radial basis function neural network (RBFNN) was proposed to compensate for disturbance. Adaptive RBFNN especially achieves online adjustment of residual error, which promotes estimation precision and eliminates the “chattering phenomenon”. The boundedness of all signals, including estimation error of high-order tracking differentiator, was especially proved via the Lyapunov stability theory, which is more rigorous. Finally, in considered scenarios, line of sight angle (LOSA)-tracking simulations were carried out to verify the tracking performance, and a Monte Carlo miss-distance simulation is presented to validate the effectiveness of the proposed method.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Aldo Jonathan Muñoz-Vázquez ◽  
Carlos Vázquez-Aguilera ◽  
Vicente Parra-Vega ◽  
Anand Sánchez-Orta

The problem addressed in this paper is the online differentiation of a signal/function that possesses a continuous but not necessarily differentiable derivative. In the realm of (integer) high-order sliding modes, a continuous differentiator provides the exact estimation of the derivative f˙(t), of f(t), by assuming the boundedness of its second-order derivative, f¨(t), but it has been pointed out that if f˙(t) is casted as a Hölder function, then f˙(t) is continuous but not necessarily differentiable, and as a consequence, the existence of f¨(t) is not guaranteed, but even in such a case, the derivative of f(t) can be exactly estimated by means of a continuous fractional sliding mode-based differentiator. Then, the properties of fractional sliding modes, as exact differentiators, are studied. The novelty of the proposed differentiator is twofold: (i) it is continuous, and (ii) it provides the finite-time exact estimation of f˙(t), even if f¨(t) does not exist. A numerical study is discussed to show the reliability of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document