Some Effects of Thickness on the Longitudinal Characteristics of Sharp-Edged Delta Wings at Low Speeds

1968 ◽  
Vol 72 (686) ◽  
pp. 151-155 ◽  
Author(s):  
L. C. Squire

Recently there has been renewed interest in the concept of an all-wing aircraft as a means of producing cheap air transport over relatively short distances. It is natural that with the large amount of information on slender wings now available an all-wing aircraft based on a sharp-edged slender planform should be considered for this role. One of the difficulties immediately faced in developing this concept is that since the aircraft must carry a large number of passengers it is necessary that as much of the wing area as possible should be deep enough to provide for a large passenger cabin. Thus the wing will be very thick over a large part of its area. If this condition is not met, then the aircraft has too much wing area and hence too high a structure weight. Typically one may think of an aircraft with a delta wing of aspect ratio 2 and with a wing thickness of from 15% to 20% of the root chord over as much of the wing area as possible. At first sight thickness of this order eliminates the main advantage of slender wings since the effect of thickness is usually to reduce the strength of the leading-edge vortices and hence the non-linear lift. Thus the incidence for a given lift is increased above that for a thin wing. This in turn means that the lift-to-drag ratio may be smaller.

2005 ◽  
Vol 109 (1098) ◽  
pp. 403-407 ◽  
Author(s):  
J. J. Wang ◽  
S. F. Lu

Abstract The aerodynamic performances of a non-slender 50° delta wing with various leading-edge bevels were measured in a low speed wind tunnel. It is found that the delta wing with leading-edge bevelled leeward can improve the maximum lift coefficient and maximum lift to drag ratio, and the stall angle of the wing is also delayed. In comparison with the blunt leading-edge wing, the increment of maximum lift to drag ratio is 200%, 98% and 100% for the wings with relative thickness t/c = 2%, t/c = 6.7% and t/c = 10%, respectively.


2021 ◽  
pp. 1-25
Author(s):  
Rajan B. Kurade ◽  
L. Venkatakrishnan ◽  
G. Jagadeesh

Abstract Shock-induced vortex breakdown, which occurs on the delta wings at transonic speed, causes a sudden and significant change in the aerodynamic coefficients at a moderate angle-of-attack. Wind-tunnel tests show a sudden jump in the aerodynamic coefficients such as lift force, pitching moment and centre of pressure which affect the longitudinal stability and controllability of the vehicle. A pneumatic jet operated at sonic condition blown spanwise and along the vortex core over a 60° swept delta-wing-body configuration is found to be effective in postponing this phenomenon by energising the vortical structure, pushing the vortex breakdown location downstream. The study reports that a modest level of spanwise blowing enhances the lift by about 6 to 9% and lift-to-drag ratio by about 4 to 9%, depending on the free-stream transonic Mach number, and extends the usable angle-of-attack range by 2°. The blowing is found to reduce the magnitude of unsteady pressure fluctuations by 8% to 20% in the aft portion of the wing, depending upon the method of blowing. Detailed investigations carried out on the location of blowing reveal that the blowing close to the apex of the wing maximises the benefits.


1973 ◽  
Vol 24 (2) ◽  
pp. 120-128 ◽  
Author(s):  
J E Barsby

SummarySolutions to the problem of separated flow past slender delta wings for moderate values of a suitably defined incidence parameter have been calculated by Smith, using a vortex sheet model. By increasing the accuracy of the finite-difference technique, and by replacing Smith’s original nested iteration procedure, to solve the non-linear simultaneous equations that arise, by a Newton’s method, it is possible to extend the range of the incidence parameter over which solutions can be obtained. Furthermore for sufficiently small values of the incidence parameter, new and unexpected results in the form of vortex systems that originate inboard from the leading edge have been discovered. These new solutions are the only solutions, to the author’s knowledge, of a vortex sheet leaving a smooth surface.Interest has centred upon the shape of the finite vortex sheet, the position of the isolated vortex, and the lift, and variations of these quantities are shown as functions of the incidence parameter. Although no experimental evidence is available, comparisons are made with the simpler Brown and Michael model in which all the vorticity is assumed to be concentrated onto an isolated line vortex. Agreement between these two models becomes very close as the value of the incidence parameter is reduced.


1961 ◽  
Vol 65 (603) ◽  
pp. 195-198 ◽  
Author(s):  
B. J. Elle ◽  
J. P. Jones

A description is given of the distribution of vorticity in the surface of thin wings with large leading edge sweep. Although the delta wing is chosen as the basic plan form the deductions are general and applicable to other types of wing. The conclusions are illustrated with experimental evidence from a water tunnel.


2003 ◽  
Vol 125 (4) ◽  
pp. 468-478 ◽  
Author(s):  
R. P. J. O. M. van Rooij ◽  
W. A. Timmer

In modern wind turbine blades, airfoils of more than 25% thickness can be found at mid-span and inboard locations. At mid-span, aerodynamic requirements dominate, demanding a high lift-to-drag ratio, moderate to high lift and low roughness sensitivity. Towards the root, structural requirements become more important. In this paper, the performance for the airfoil series DU FFA, S8xx, AH, Risø and NACA are reviewed. For the 25% and 30% thick airfoils, the best performing airfoils can be recognized by a restricted upper-surface thickness and an S-shaped lower surface for aft-loading. Differences in performance of the DU 91-W2-250 (25%), S814 (24%) and Risø-A1-24 (24%) airfoils are small. For a 30% thickness, the DU 97-W-300 meets the requirements best. Reduction of roughness sensitivity can be achieved both by proper design and by application of vortex generators on the upper surface of the airfoil. Maximum lift and lift-to-drag ratio are, in general, enhanced for the rough configuration when vortex generators are used. At inboard locations, 2-D wind tunnel tests do not represent the performance characteristics well because the influence of rotation is not included. The RFOIL code is believed to be capable of approximating the rotational effect. Results from this code indicate that rotational effects dramatically reduce roughness sensitivity effects at inboard locations. In particular, the change in lift characteristics in the case of leading edge roughness for the 35% and 40% thick DU airfoils, DU 00-W-350 and DU 00-W-401, respectively, is remarkable. As a result of the strong reduction of roughness sensitivity, the design for inboard airfoils can primarily focus on high lift and structural demands.


2004 ◽  
Vol 52 (601) ◽  
pp. 65-71
Author(s):  
Dong-Youn Kwak ◽  
Katsuhiro Miyata ◽  
Masayoshi Noguchi ◽  
Kenji Yoshida ◽  
Kenichi Rinoie

2016 ◽  
Vol 851 ◽  
pp. 532-537
Author(s):  
Nur Faraihan Zulkefli ◽  
Zulhilmy Sahwee ◽  
Nurhayati Mohd Nur ◽  
Muhamad Nor Ashraf Mohd Fazil ◽  
Muaz Mohd Shukri

This study was conducted to investigate the performance of passive and active vortex generator on the wing’s flap. The triangular shape of passive vortex generator (VG) was developed and attached on the wing’s flap leading edge while the plasma actuator performed as active vortex generator. The test was carried out experimentally using subsonic wind tunnel with 300 angles extended flap. Three different types of turbulent flow; with Reynolds number 1.5 x105, 2.0 x105, and 2.6x105 were used to study the aerodynamics forces of airfoil with plasma actuator OFF. All Reynolds number used were below 1x106. The result indicated that airfoil with plasma actuator produced higher lift coefficient 12% and lift-to-drag ratio 5% compared to airfoil with passive vortex generator. The overall result showed that airfoil with plasma actuator produced better lift forces compared to passive vortex generator.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
T. Lee ◽  
S. Choi

The control of the tip vortex, generated by a rectangular NACA 0012 wing, via tip-mounted half-delta wings (HDWs), of different slendernesses Λ, root chords cr, and deflections δ, was investigated experimentally at Re = 2.45 × 105. The results show that regardless of Λ, cr, and δ, the addition of HDWs consistently led to a diffused tip vortex. The degree of diffusion was, however, found to increase with decreasing Λ and cr. HDWs with cr ≤ 50% of the baseline-wing chord c caused a rapid diffusion of vorticity and rendered a weak circulation flowlike tip vortex, suggesting an enhanced wake-vortex decay and alleviation. The cr = 0.5c HDW also produced an improved lift-to-drag ratio. A unique double-vortex pattern also exhibited downstream of the cr ≤ 50%c HDW wings. The interaction and merging of the double vortex were expedited by upward HDW deflection.


2019 ◽  
Vol 8 (4) ◽  
pp. 9231-9234

An experimental study was conducted to investigate the aerodynamic performance of the NACA 4415 airfoil with and without passive vortex generators. The measurement has been carried out for three considered cases: smooth airfoil for baseline case, airfoil with triangular vortex generator and also airfoil with shark skin shape vortex generator. Both the triangular and shark skin vortex generators were located at 50% of chord from leading edge of the airfoil with a 20° counter-rotating incident angle. The experiments were conducted with Reynold’s number of 100,000. Overall, the results indicate that the lift and drag coefficients, and lift-to-drag ratio, for the airfoil with sharkskin vortex generator are comparatively higher than the other airfoils at some angles of attack. The findings can be applied in optimizing shark skin shape vortex generator for the airfoil performance enhancement.


Author(s):  
Hongtao Gao ◽  
Wencai Zhu

The duck's webbed feet are observed by using electron microscopy, and observations indicate that the edges of the webbed feet are the shape of protuberances. Therefore, the rudder with leading-edge protuberances is numerically studied in the present investigation. The rudder has a sinusoidal leading-edge profile along the spanwise direction. The hydrodynamic performance of rudder is analyzed under the influence of leading-edge protuberances. The present investigations are carried out at Re = 3.2 × 105 and 8 × 105. In the case of Re = 3.2 × 105, the curves of lift coefficient illustrate that the protuberant leading-edge scarcely affects the lift coefficient of bionic rudder. However, the drag coefficient of the bionic rudder is markedly lower than that of the unmodified rudder. Therefore, the lift-to-drag ratio of the bionic rudder is obviously higher than the unmodified rudder. In another case of Re = 8 × 105, the advantageous behavior of the bionic rudder with leading-edge protuberances is mainly performed in the post-stall regime. The flow mechanism of the significantly increased efficiency by the protuberant leading-edge is explored. It is obvious that the pairs of counter-rotating vortices are presented over the suction surface of bionic rudder, and therefore, the flow is more likely to adhere to the suction surface of bionic rudder.


Sign in / Sign up

Export Citation Format

Share Document