scholarly journals Long-chain n-3 DHA reduces the extent of skeletal muscle fatigue in the rat in vivo hindlimb model

2013 ◽  
Vol 111 (6) ◽  
pp. 996-1003 ◽  
Author(s):  
Gregory E. Peoples ◽  
Peter L. McLennan

Dietary fish oil modifies skeletal muscle membrane fatty acid composition and oxygen efficiency similar to changes in the myocardium. Oxygen efficiency is a key determinant of sustained force in mammalian skeletal muscle. Therefore, in the present study, we tested the effects of a fish-oil diet on skeletal muscle fatigue under the stress of contraction using the rat in vivo autologous perfused hindlimb model. For 8 weeks, male Wistar rats were fed a diet rich in saturated fat (SF), a diet rich in n-6 PUFA or a diet rich in long-chain (LC) n-3 PUFA DHA derived from fish oil. In anaesthetised, mechanically ventilated rats, with their hindlimbs perfused with arterial blood at a constant flow, the gastrocnemius–plantaris–soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6–12 V, 0·05 ms) to contract repetitively for 30 min. Rats fed the n-3 PUFA diet developed higher maximum twitch tension than those fed the SF and n-6 PUFA diets (P< 0·05) and sustained twitch tension through more repetitions before the tension declined to 50 % of the maximum twitch tension (P< 0·05). The n-3 PUFA group used less oxygen for tension developed and produced higher venous lactate concentrations with no difference in glycogen utilisation compared with the SF and n-6 PUFA groups. These results further support that incorporation of DHA into skeletal muscle membranes increases the efficiency of oxygen use over a range of contractile force and this is expressed as a higher sustained force and prolonged time to fatigue.

2017 ◽  
Vol 42 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Gregory E. Peoples ◽  
Peter L. McLennan

Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O2 (SaO2–98%) and hypoxia 14% O2 (SaO2–89%)) the hindlimb was perfused at a constant flow and the gastrocnemius–plantaris–soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6–12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g−1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.


2010 ◽  
Vol 104 (12) ◽  
pp. 1771-1779 ◽  
Author(s):  
Gregory E. Peoples ◽  
Peter L. McLennan

Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composition on skeletal muscle function. Male Wistar rats were fed either saturated fat (SF), n-6 PUFA (linoleic acid rich) or n-3 PUFA (fish oil) diets for 8 weeks. Hindlimb skeletal muscle perfused using the animal's own blood was stimulated via the sciatic nerve (1 Hz, 6-12 V, 0·05 ms) to contract in repeated 10 min bouts. The n-3 PUFA diet markedly increased 22 : 6n-3 DHA, total n-3 PUFA and decreased the n-6:n-3 PUFA ratio (P < 0·05) in red and white skeletal muscle membranes. There was no difference in initial twitch tension but the n-3 PUFA group maintained greater twitch tension within all contraction bouts and recovered better during rest to produce greater twitch tension throughout the final contraction bout (P < 0·05). Hindlimb oxygen consumption during contraction was significantly lower in the n-3 PUFA group compared with the SF group, producing a significantly higher O2 efficiency index compared with both SF and n-6 PUFA groups (P < 0·05). Resting oxygen consumption was increased in recovery in the SF group (P < 0·05) but did not change in the n-3 PUFA group. Membrane incorporation of n-3 PUFA DHA following fish oil feeding was associated with increased efficiency of muscle O2 consumption and promoted resistance to muscle fatigue.


2009 ◽  
Vol 297 (1) ◽  
pp. R26-R33 ◽  
Author(s):  
Tommy A. Rehn ◽  
Bengt Å. Borge ◽  
Per K. Lunde ◽  
Morten Munkvik ◽  
Marianne Lunde Sneve ◽  
...  

Patients with congestive heart failure (CHF) experience increased skeletal muscle fatigue. The mechanism underlying this phenomenon is unknown, but a deranged extracellular matrix (ECM) might be a contributing factor. Hence, we examined ECM components and regulators in a rat postinfarction model of CHF. At various time points during a 3.5 mo-period after induction of CHF in rats by left coronary artery ligation, blood, interstitial fluid (IF), and muscles were sampled. Isoflurane anesthesia was employed during all surgical procedures. IF was extracted by wicks inserted intermuscularly in a hind limb. We measured cytokines in plasma and IF, whereas matrix metalloproteinase (MMP) activity and collagen content, as well as the level of glycosaminoglycans and hyaluronan were determined in hind limb muscle. In vivo fatigue protocols of the soleus muscle were performed at 42 and 112 days after induction of heart failure. We found that the MMP activity and collagen content in the skeletal muscles increased significantly at 42 days after induction of CHF, and these changes were time related to increased skeletal muscle fatigability. These parameters returned to sham levels at 112 days. VEGF in IF was significantly lower in CHF compared with sham-operated rats at 3 and 10 days, but no difference was observed at 112 days. We conclude that temporary alterations in the ECM, possibly triggered by VEGF, are related to a transient development of skeletal muscle fatigue in CHF.


2019 ◽  
Vol 27 (4) ◽  
pp. 253-259
Author(s):  
Beyza Akyüz ◽  
Pınar Arpınar Avşar ◽  
Murat Bilge ◽  
Gökhan Deliceoğlu ◽  
Feza Korkusuz

2018 ◽  
Vol 597 (2) ◽  
pp. 373-374
Author(s):  
Aurora D. Foster ◽  
Liam F. Fitzgerald ◽  
Miles F. Bartlett ◽  
Chad R. Straight

2018 ◽  
Vol 33 (6) ◽  
pp. 1197-1205 ◽  
Author(s):  
Renata Luri Toma ◽  
Murilo Xavier Oliveira ◽  
Ana Cláudia Muniz Renno ◽  
E-Liisa Laakso

2020 ◽  
Vol 129 (6) ◽  
pp. 1405-1412
Author(s):  
Sydnee A. Hyman ◽  
Mackenzie B. Norman ◽  
Shanelle N. Dorn ◽  
Shannon N. Bremner ◽  
Mary C. Esparza ◽  
...  

We introduce an improved method to assess rabbit supraspinatus muscle physiology. Maximum isometric force measured for the rabbit supraspinatus was dramatically greater than previous reports in the literature. Consequently, the isometric contractile stress reported is almost 10 times greater than previous reports of rabbit supraspinatus, but similar to available literature of other mammalian skeletal muscle. We show that previous reports of peak supraspinatus isometric force were subphysiological by ∼90%


1960 ◽  
Vol 38 (8) ◽  
pp. 829-835 ◽  
Author(s):  
L. H. Burr ◽  
H. McLennan

The apparent extracellular volumes of the muscles from young normal and dystrophic mice have been estimated, using inulin dilution techniques. The inulin spaces were measured in the muscle both following injection of inulin in vivo and after soaking of excised tissues in a solution containing inulin. Comparisons were made between muscles of different size from the same animal as well as from different animals whose age, and consequently muscle size, varied. In all cases it has been found that the inulin space decreases with increasing muscle size. Similar results have been obtained by others with toad sartorii. The inulin space in muscles from dystrophic mice is larger than that of comparable normal tissues, and the dependence on muscle size, although similar to normal, is more pronounced. The results suggest that the dystrophic cells are permeable to inulin, and the question that some small permeability may be present also in normal tissue is considered.


Sign in / Sign up

Export Citation Format

Share Document