Effects of strawberry intervention on cardiovascular risk factors: a meta-analysis of randomised controlled trials

2020 ◽  
Vol 124 (3) ◽  
pp. 241-246
Author(s):  
Qi Gao ◽  
Li-Qiang Qin ◽  
Ahmed Arafa ◽  
Ehab S. Eshak ◽  
Jia-Yi Dong

AbstractWe conducted a meta-analysis of randomised controlled trials (RCT) to examine the effects of strawberry interventions on cardiovascular risk factors. We searched multiple databases including PubMed, Web of Science and Scopus to identify eligible studies published before 19 May 2019. The endpoints were blood pressure, total cholesterol (TC), HDL-cholesterol, LDL-cholesterol, TAG, fasting blood glucose, endothelial function and inflammatory factors. Pooled analyses were performed using random- or fixed-effects models according to a heterogeneity test. We also conducted sub-group analyses by baseline endpoint levels. We included eleven RCT in this meta-analysis (six for blood pressure, seven for lipid profile, seven for fasting blood glucose and six for C-reactive protein (CRP)). Overall, the strawberry interventions significantly reduced CRP levels by 0·63 (95 % CI −1·04, −0·22) mg/l but did not affect blood pressure, lipid profile or fasting blood glucose in the main analyses. Our analysis stratified by baseline endpoint levels showed the strawberry interventions significantly reduced TC among people with baseline levels >5 mmol/l (−0·52 (95 % CI −0·88, −0·15) mmol/l) and reduced LDL-cholesterol among people with baseline levels >3 mmol/l (−0·31 (95 % CI −0·60, −0·02) mmol/l). There was little evidence of heterogeneity in the analysis and no evidence of publication bias. In summary, strawberry interventions significantly reduced CRP levels and may improve TC and LDL-cholesterol in individuals with high baseline levels.

2020 ◽  
Vol 124 (7) ◽  
pp. 641-653 ◽  
Author(s):  
Elizabeth P. Neale ◽  
Vivienne Guan ◽  
Linda C. Tapsell ◽  
Yasmine C. Probst

AbstractType 2 diabetes mellitus is a chronic disease increasing in global prevalence. Although habitual consumption of walnuts is associated with reduced risk of CVD, there is inconsistent evidence for the impact of walnut consumption on markers of glycaemic control. This systematic review and meta-analysis aimed to examine the effect of walnut consumption on markers of blood glucose control. A systematic search of Medline, PubMed, CINAHL and Cochrane databases (to 2 March 2019) was conducted. Inclusion criteria were randomised controlled trials conducted with adults which assessed the effect of walnut consumption on fasting blood glucose and insulin, glycated Hb and homeostatic model assessment of insulin resistance. Random effects meta-analyses were conducted to assess the weighted mean differences (WMD) for each outcome. Risk of bias in studies was assessed using the Cochrane Risk of Bias tool 2.0. Sixteen studies providing eighteen effect sizes were included in the review. Consumption of walnuts did not result in significant changes in fasting blood glucose levels (WMD: 0·331 mg/dl; 95 % CI −0·817, 1·479) or other outcome measures. Studies were determined to have either ‘some concerns’ or be at ‘high risk’ of bias. There was no evidence of an effect of walnut consumption on markers of blood glucose control. These findings suggest that the known favourable effects of walnut intake on CVD are not mediated via improvements in glycaemic control. Given the high risk of bias observed in the current evidence base, there is a need for further high-quality randomised controlled trials.


2017 ◽  
Vol 6 ◽  
Author(s):  
Mary M. Murphy ◽  
Erin C. Barrett ◽  
Kara A. Bresnahan ◽  
Leila M. Barraj

AbstractStudies on the effects of consuming 100 % fruit juice on measures of glycaemic control are conflicting. The purpose of the present study was to systematically review and quantitatively summarise results from randomised controlled trials (RCT) examining effects of 100 % fruit juice on glucose–insulin homeostasis. Eligible studies were identified from a systematic review of PubMed and EMBASE and hand searches of reference lists from reviews and relevant papers. Using data from eighteen RCT, meta-analyses evaluated the mean difference in fasting blood glucose (sixteen studies), fasting blood insulin (eleven studies), the homeostatic model assessment of insulin resistance (HOMA-IR; seven studies) and glycosylated Hb (HbA1c; three studies) between the 100 % fruit juice intervention and control groups using a random-effects model. Compared with the control group, 100 % fruit juice had no significant effect on fasting blood glucose (−0·13 (95 % CI −0·28, 0·01) mmol/l; P = 0·07), fasting blood insulin (−0·24 (95 % CI −3·54, 3·05) pmol/l; P = 0·89), HOMA-IR (−0·22 (95 % CI −0·50, 0·06); P = 0·13) or HbA1c (−0·001 (95 % CI −0·38, 0·38) %; P = 0·28). Results from stratified analyses and univariate meta-regressions also largely showed no significant associations between 100 % fruit juice and the measures of glucose control. Overall, findings from this meta-analysis of RCT suggest a neutral effect of 100 % fruit juice on glycaemic control. These findings are consistent with findings from some observational studies suggesting that consumption of 100 % fruit juice is not associated with increased risk of diabetes.


2015 ◽  
Vol 115 (3) ◽  
pp. 466-479 ◽  
Author(s):  
Nadia Mansoor ◽  
Kathrine J. Vinknes ◽  
Marit B. Veierød ◽  
Kjetil Retterstøl

AbstractThe effects of low-carbohydrate (LC) diets on body weight and cardiovascular risk are unclear, and previous studies have found varying results. Our aim was to conduct a meta-analysis of randomised controlled trials (RCT), assessing the effects of LC dietsv. low-fat (LF) diets on weight loss and risk factors of CVD. Studies were identified by searching MEDLINE, Embase and Cochrane Trials. Studies had to fulfil the following criteria: a RCT; the LC diet was defined in accordance with the Atkins diet, or carbohydrate intake of <20 % of total energy intake; twenty subjects or more per group; the subjects were previously healthy; and the dietary intervention had a duration of 6 months or longer. Results from individual studies were pooled as weighted mean difference (WMD) using a random effect model. In all, eleven RCT with 1369 participants met all the set eligibility criteria. Compared with participants on LF diets, participants on LC diets experienced a greater reduction in body weight (WMD –2·17 kg; 95 % CI –3·36, –0·99) and TAG (WMD –0·26 mmol/l; 95 % CI –0·37, –0·15), but a greater increase in HDL-cholesterol (WMD 0·14 mmol/l; 95 % CI 0·09, 0·19) and LDL-cholesterol (WMD 0·16 mmol/l; 95 % CI 0·003, 0·33). This meta-analysis demonstrates opposite change in two important cardiovascular risk factors on LC diets – greater weight loss and increased LDL-cholesterol. Our findings suggest that the beneficial changes of LC diets must be weighed against the possible detrimental effects of increased LDL-cholesterol.


Medicina ◽  
2021 ◽  
Vol 57 (9) ◽  
pp. 957
Author(s):  
Nur Nadiah Syuhada Ramli ◽  
Areej A. Alkhaldy ◽  
Abbe Maleyki Mhd Jalil

Coffee is rich in phenolic acids, such as caffeic acid and chlorogenic acid (CGA). Polyphenol-rich diets were shown to reduce the risk of metabolic syndrome (MeTS). Background and Objectives: This systematic review and meta-analysis discusses the effects of coffee consumption and its dose-response on MeTS parameters. Materials and Methods: PubMed and Scopus® were searched for relevant articles published between 2015 and 2020. This review focused on randomised controlled trials (RCTs) investigating the effect of coffee consumption on anthropometric measurements, glycaemic indices, lipid profiles, and blood pressure. Data from relevant studies were extracted and analysed using random, fixed, or pooled effects models with 95% confidence intervals (CIs). Results: Green coffee extract (GCE) supplementation (180 to 376 mg) was found to reduce waist circumference (weighted mean difference (WMD) = −0.39; 95% CI: −0.68, −0.10), triglyceride levels (WMD = −0.27; 95% CI: −0.43, −0.10), high−density lipoprotein−cholesterol levels (WMD = 0.62; 95% CI: 0.34, 0.90), systolic blood pressure (WMD = −0.44; 95% CI: −0.57, −0.32), and diastolic blood pressure (WMD = −0.83; 95% CI: −1.40, −0.26). Decaffeinated coffee (510.6 mg) reduced fasting blood glucose levels (WMD = −0.81; 95% CI: −1.65, 0.03). The meta-analysis showed that the intake of GCE containing 180 to 376 mg of CGA (administered in a capsule) and liquid decaffeinated coffee containing 510.6 mg of CGA improved the MeTS outcomes in study participants. Conclusions: The findings of the review suggested that the effect of coffee on MeTS parameters varies depending on the types and doses of coffee administered. A more detailed RCT on specific coffee doses (with adjustment for energy and polyphenol intake) and physical activity is needed to further confirm the observed outcomes.


Author(s):  
Nur Nadiah Syuhada Ramli ◽  
Areej A Alkhaldy ◽  
Abbe Maleyki Mhd Jalil

Coffee is rich in phenolic acids, such as caffeic acid and chlorogenic acid (CGA). Polyphenol-rich diets have been shown to reduce the risk of metabolic syndrome (MeTS). Background and Objectives: This systematic review and meta-analysis discusses the effects of coffee consumption and its dose-response on MeTS parameters. Materials and Methods: PubMed and Scopus® were searched for relevant articles published between 2015 and 2020. This review focused on randomised controlled trials (RCTs) investigating the effect of coffee consumption on anthropometric measurements, glycaemic indices, lipid profiles, and blood pressure. Data from relevant studies were extracted and analysed using random, fixed, or pooled effects models with 95% confidence intervals (CIs). Results: Green coffee extract (GCE) supplementation (180 to 376 mg) was found to reduce waist circumference (weighted mean difference (WMD) = -0.39; 95% CI: -0.68, -0.10), triglyceride levels (WMD = -0.27; 95% CI: -0.43, -0.10), high-density lipoprotein-cholesterol levels (WMD = 0.62; 95% CI: 0.34, 0.90), systolic blood pressure (WMD = -0.44; 95% CI: -0.57, -0.32), and diastolic blood pressure (WMD = -0.83; 95% CI: -1.40, -0.26). Decaffeinated coffee (510.6 mg) reduced the fasting blood glucose levels (WMD = -0.81; 95% CI: -1.65, 0.03). The meta-analysis showed that the intake of GCE containing 180 to 376 mg of CGA (administered in a capsule) and liquid decaffeinated coffee containing 510.6 mg of CGA improved the MeTS outcomes in study participants. Conclusions: The findings of the review suggested that the effect of coffee on MeTS parameters varies depending on the types and doses of coffee administered. A more detailed RCT on specific coffee doses (with adjustment for energy and polyphenol intake) and physical activity is needed to further confirm the observed outcomes.


BMJ ◽  
2021 ◽  
pp. n1651 ◽  
Author(s):  
Laura Chiavaroli ◽  
Danielle Lee ◽  
Amna Ahmed ◽  
Annette Cheung ◽  
Tauseef A Khan ◽  
...  

Abstract Objective To inform the update of the European Association for the Study of Diabetes clinical practice guidelines for nutrition therapy. Design Systematic review and meta-analysis of randomised controlled trials. Data sources Medline, Embase, and the Cochrane Library searched up to 13 May 2021. Eligibility criteria for selecting studies Randomised controlled trials of three or more weeks investigating the effect of diets with low glycaemic index (GI)/glycaemic load (GL) in diabetes. Outcome and measures The primary outcome was glycated haemoglobin (HbA 1c ). Secondary outcomes included other markers of glycaemic control (fasting glucose, fasting insulin); blood lipids (low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), non-HDL-C, apo B, triglycerides); adiposity (body weight, BMI, waist circumference), blood pressure (systolic blood pressure (SBP) and diastolic blood pressure (DBP)), and inflammation (C reactive protein (CRP)). Data extraction and synthesis Two independent reviewers extracted data and assessed risk of bias. Data were pooled by random effects models. GRADE (grading of recommendations assessment, development, and evaluation) was used to assess the certainty of evidence. Results 29 trial comparisons were identified in 1617 participants with type 1 and 2 diabetes who were predominantly middle aged, overweight, or obese with moderately controlled type 2 diabetes treated by hyperglycaemia drugs or insulin. Low GI/GL dietary patterns reduced HbA 1c in comparison with higher GI/GL control diets (mean difference −0.31% (95% confidence interval −0.42 to −0.19%), P<0.001; substantial heterogeneity, I 2 =75%, P<0.001). Reductions occurred also in fasting glucose, LDL-C, non-HDL-C, apo B, triglycerides, body weight, BMI, and CRP (P<0.05), but not blood insulin, HDL-C, waist circumference, or blood pressure. A positive dose-response gradient was seen for the difference in GL and HbA 1c and for absolute dietary GI and SBP (P<0.05). The certainty of evidence was high for the reduction in HbA 1c and moderate for most secondary outcomes, with downgrades due mainly to imprecision. Conclusions This synthesis suggests that low GI/GL dietary patterns result in small important improvements in established targets of glycaemic control, blood lipids, adiposity, and inflammation beyond concurrent treatment with hyperglycaemia drugs or insulin, predominantly in adults with moderately controlled type 1 and type 2 diabetes. The available evidence provides a good indication of the likely benefit in this population. Study registration ClinicalTrials.gov NCT04045938 .


2014 ◽  
Vol 53 (6) ◽  
pp. 1299-1311 ◽  
Author(s):  
Saman Khalesi ◽  
Jing Sun ◽  
Nicholas Buys ◽  
Arash Jamshidi ◽  
Elham Nikbakht-Nasrabadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document