Armored scale insect endosymbiont diversity at the species level: genealogical patterns of Uzinura diasipipdicola in the Chionaspis pinifoliae–Chionaspis heterophyllae species complex (Hemiptera: Coccoidea: Diaspididae)

2014 ◽  
Vol 105 (1) ◽  
pp. 110-120 ◽  
Author(s):  
J.C. Andersen ◽  
R.A. Gwiazdowski ◽  
K. Gdanetz ◽  
M.E. Gruwell

AbstractArmored scale insects and their primary bacterial endosymbionts show nearly identical patterns of co-diversification when viewed at the family level, though the persistence of these patterns at the species level has not been explored in this group. Therefore we investigated genealogical patterns of co-diversification near the species level between the primary endosymbiont Uzinura diaspidicola and its hosts in the Chionaspis pinifoliae–Chionaspis heterophyllae species complex. To do this we generated DNA sequence data from three endosymbiont loci (rspB, GroEL, and 16S) and analyzed each locus independently using statistical parsimony network analyses and as a concatenated dataset using Bayesian phylogenetic reconstructions. We found that for two endosymbiont loci, 16S and GroEL, sequences from U. diaspidicola were broadly associated with host species designations, while for rspB this pattern was less clear as C. heterophyllae (species S1) shared haplotypes with several other Chionaspis species. We then compared the topological congruence of the phylogenetic reconstructions generated from a concatenated dataset of endosymbiont loci (including all three loci, above) to that from a concatenated dataset of armored scale hosts, using published data from two nuclear loci (28S and EF1α) and one mitochondrial locus (COI–COII) from the armored scale hosts. We calculated whether the two topologies were congruent using the Shimodaira–Hasegawa test. We found no significant differences (P = 0.4892) between the topologies suggesting that, at least at this level of resolution, co-diversification of U. diaspidicola with its armored scale hosts also occurs near the species level. This is the first such study of co-speciation at the species level between U. diaspidicola and a group of armored scale insects.

Zootaxa ◽  
2017 ◽  
Vol 4320 (3) ◽  
pp. 571 ◽  
Author(s):  
YEN-PO LIN ◽  
HIROTAKA TANAKA ◽  
LYN G. COOK

Coccus hesperidum L. (Hemiptera: Coccomorpha: Coccidae), the type species of the soft scale genus Coccus L., the family Coccidae and the whole of the scale insects (Coccoidea), is a cosmopolitan plant pest. Using DNA sequence data and morphological comparisons, we determine that there is a distinct species that is morphologically very similar to C. hesperidum. Here, we describe the species as Coccus praetermissus Lin & Tanaka sp. n., based on adult female specimens from Australia, Malaysia and Thailand. The adult female of C. praetermissus sp. n. differs from C. hesperidum in having dorsal setae with bluntly rounded tips, whereas they are sharply pointed in C. hesperidum. A detailed description of the newly recognised species is provided, incorporating adult female morphology and DNA sequences from mitochondrial and nuclear loci. Our examination of slides from The Natural History Museum, London, and several Australian institutions indicates that C. praetermissus sp. n. has been confused sometimes with C. hesperidum s. s. These findings have potential relevance to plant biosecurity and quarantine because C. hesperidum is cosmopolitan whereas C. praetermissus sp. n., which is also polyphagous and the two species can share many host plants, currently appears to be more geographically restricted. Additionally, there is deep genetic divergence within C. praetermissus sp. n. that might indicate that it is a cryptic species complex, but wider geographic sampling is required to test this possibility. 


2011 ◽  
Vol 101 (4) ◽  
pp. 429-434 ◽  
Author(s):  
D.-S. Park ◽  
S.-J. Suh ◽  
P.D.N. Hebert ◽  
H.-W. Oh ◽  
K.-J. Hong

AbstractAlthough DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.


1966 ◽  
Vol 29 (2) ◽  
pp. 251-265 ◽  
Author(s):  
W. Gerald Robison

Male scale insects of the species Parlatoria oleae Colvée (Homoptera: Coccoidea) produce motile sperm bundles. The bundle is a syncytium consisting of 10 to 20 closely packed, filamentous spermatozoa, which share a common cytoplasm and are enclosed in a common membrane. The individual spermatozoon is not surrounded by a plasma membrane, but is delimited by a scroll-like sheath composed of 45 to 50 microtubules. The microtubules run parallel to the long axis of the spermatozoon and are arranged in a spiral pattern as seen in transection. The outside diameter measures approximately 140 to 220 A and the inside diameter, 70 to 100 A. The spermatozoon is about 300 µ long and tapers gradually from a diameter of approximately 0.3 µ anteriorly to 0.1 µ posteriorly. The anterior half (150 µ) has a threadlike core of chromatin about 0.07 µ in diameter. A homogeneous cytoplasm surrounds the nuclear core and fills the posterior half of the spermatozoon. Neither osmium tetroxide nor glutaraldehyde fixation revealed the presence of a nuclear envelope, acrosomal membranes, mitochondria, flagellum, or centrioles. In spite of the apparent lack of orthodox cell organelles, the spermatozoon is actively motile upon release from the bundle. It exhibits capactiy for motility throughout its entire length. Since the sheath of microtubules is the only structure which extends the full length of the spermatozoon, it probably plays a significant role in spermatozoan motility.


2019 ◽  
Author(s):  
Michael Bradshaw ◽  
Felix Grewe ◽  
Anne Thomas ◽  
Cody H. Harrison ◽  
Hanna Lindgren ◽  
...  

Abstract Background Regions within the nuclear ribosomal operon are a major tool for inferring evolutionary relationships and investigating diversity in fungi. In spite of the prevalent use of ribosomal markers in fungal research, central features of nuclear ribosomal DNA (nrDNA) evolution are poorly characterized for fungi in general, including lichenized fungi. The internal transcribed spacer (ITS) region of the nrDNA has been adopted as the primary DNA barcode identification marker for fungi. However, little is known about intragenomic variation in the nrDNA in symbiotic fungi. In order to better understand evolution of nrDNA and the utility of the ITS region for barcode identification of lichen-forming fungal species, we generated nearly complete nuclear ribosomal operon sequences from approximate nine species in the Rhizoplaca melanophthalma species complex using short reads from high-throughput sequencing.Results We estimated copy numbers for the nrDNA operon, ranging from nine to 48 copies for members of this complex, and found low levels of intragenomic variation in the standard barcode region (ITS). Monophyly of currently described species in this complex was supported in phylogenetic reconstructions of the ITS, 28S, IGS, and some intronic regions; however, phylogenetic reconstructions based on the 18S provided much lower resolution. Phylogenetic analysis of concatenated ITS and intergenic spacer sequence data generated from 496 specimens collected worldwide revealed, previously unrecognized lineages in the nrDNA phylogeny.Conclusions The results from our study support the general assumption that the ITS region of the nrDNA is an effective barcoding marker for fungi. For the R. melanophthalma group, the limited number of potentially polymorphic sites generally do not correspond to fixed diagnostic nucleotide position characters separating taxa within this species complex. Previously unrecognized lineages inferred from ITS sequence data may represent undescribed species-level lineages or reflect uncharacterized aspects of nrDNA evolution.


2021 ◽  
Vol 7 (8) ◽  
pp. 628
Author(s):  
Xiu-Lan Xu ◽  
Qian Zeng ◽  
Yi-Cong Lv ◽  
Rajesh Jeewon ◽  
Sajeewa S. N. Maharachchikumbura ◽  
...  

This study led to the discovery of three entomopathogenic fungi associated with Kuwanaspis howardi, a scale insect on Phyllostachys heteroclada (fishscale bamboo) and Pleioblastus amarus (bitter bamboo) in China. Two of these species belong to Podonectria: P. kuwanaspidis X.L. Xu & C.L. Yang sp. nov. and P. novae-zelandiae Dingley. The new species P. kuwanaspidis has wider and thicker setae, longer and wider asci, longer ascospores, and more septa as compared with similar Podonectria species. The morphs of extant species P. novae-zelandiae is confirmed based on sexual and asexual morphologies. Maximum likelihood and Bayesian inference analyses of ITS, LSU, SSU, tef1-α, and rpb2 sequence data provide further evidence for the validity of the two species and their placement in Podonectriaceae (Pleosporales). The second new species, Microcera kuwanaspidis X.L. Xu & C.L. Yang sp. nov., is established based on DNA sequence data from ITS, LSU, SSU, tef1-α, rpb1, rpb2, acl1, act, cmdA, and his3 gene regions, and it is characterized by morphological differences in septum numbers and single conidial mass.


EDIS ◽  
1969 ◽  
Vol 2004 (18) ◽  
Author(s):  
Anthony Camerino

Ground pearls are a primitive subterrestrial relative of the widely recognized above ground armored scale insect (family Diaspididae). While retaining well-developed fossorial legs with numerous setae (which scale insects do not have), ground pearls do not possess the ability to secrete scales similar to their scale relatives (Beardsley and Gonzalez). Instead, the ground pearls excrete a waxy covering that totally surrounds their body with the exception of their piercing- sucking mouthparts. The voided waxy spherical covering of the insect is the most likely structure to be encountered. The sphere is pink to yellowish-brown in color and measures from 1/6 of an inch in diameter to as small as a grain of sand (Short). The exposed mouthparts are used to feed and attach to the roots of plants. This document is EENY-277, one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: November 2002.  EENY277/IN554: Ground Pearls, Margarodes spp. (Insecta: Hemiptera: Margarodidae) (ufl.edu)


1968 ◽  
Vol 61 (4) ◽  
pp. 1086-1088 ◽  
Author(s):  
H. L. Maltby ◽  
Eteazar Jimenez-Jimenez ◽  
Paul DeBach

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Marcus H. Y. Leung ◽  
David Wilkins ◽  
Patrick K. H. Lee

Abstract Many studies have characterized microbiomes of western individuals. However, studies involving non-westerners are scarce. This study characterizes the skin microbiomes of Chinese individuals. Skin-associated genera, including Propionibacterium, Corynebacterium, Staphylococcus and Enhydrobacter were prevalent. Extensive inter-individual microbiome variations were detected, with core genera present in all individuals constituting a minority of genera detected. Species-level analyses presented dominance of potential opportunistic pathogens in respective genera. Host properties including age, gender and household were associated with variations in community structure. For all sampled sites, skin microbiomes within an individual is more similar than that of different co-habiting individuals, which is in turn more similar than individuals living in different households. Network analyses highlighted general and skin-site specific relationships between genera. Comparison of microbiomes from different population groups revealed race-based clustering explained by community membership (Global R = 0.968) and structure (Global R = 0.589), contributing to enlargement of the skin pan-microbiome. This study provides the foundation for subsequent in-depth characterization and microbial interactive analyses on the skin and other parts of the human body in different racial groups and an appreciation that the human skin pan-microbiome can be much larger than that of a single population.


Author(s):  
Viola Kurm ◽  
Ilse Houwers ◽  
Claudia E. Coipan ◽  
Peter Bonants ◽  
Cees Waalwijk ◽  
...  

AbstractIdentification and classification of members of the Ralstonia solanacearum species complex (RSSC) is challenging due to the heterogeneity of this complex. Whole genome sequence data of 225 strains were used to classify strains based on average nucleotide identity (ANI) and multilocus sequence analysis (MLSA). Based on the ANI score (>95%), 191 out of 192(99.5%) RSSC strains could be grouped into the three species R. solanacearum, R. pseudosolanacearum, and R. syzygii, and into the four phylotypes within the RSSC (I,II, III, and IV). R. solanacearum phylotype II could be split in two groups (IIA and IIB), from which IIB clustered in three subgroups (IIBa, IIBb and IIBc). This division by ANI was in accordance with MLSA. The IIB subgroups found by ANI and MLSA also differed in the number of SNPs in the primer and probe sites of various assays. An in-silico analysis of eight TaqMan and 11 conventional PCR assays was performed using the whole genome sequences. Based on this analysis several cases of potential false positives or false negatives can be expected upon the use of these assays for their intended target organisms. Two TaqMan assays and two PCR assays targeting the 16S rDNA sequence should be able to detect all phylotypes of the RSSC. We conclude that the increasing availability of whole genome sequences is not only useful for classification of strains, but also shows potential for selection and evaluation of clade specific nucleic acid-based amplification methods within the RSSC.


Sign in / Sign up

Export Citation Format

Share Document