statistical parsimony
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

Phytotaxa ◽  
2021 ◽  
Vol 516 (3) ◽  
Author(s):  
KURTULUŞ ÖZGİŞİ ◽  
BURCU TARIKAHYA-HACIOĞLU

Symphytum is regarded one of the most complicated genera in terms of the classification of its members among the Boraginaceae. In addition to different infrageneric classification methods, several species complex or aggregates have been proposed to deal with the taxonomical problem of genus members. Symphytum asperum aggregate was first introduced by Kurtto, who proposed six taxa within this aggregate. However, according to further studies by different researchers based on morphological data, total number of species of the complex was variable. The number of species was reduced to three, comprising S. asperum, S. savvalense, and S. sylvaticum, after the phylogenetic and morphological studies of Tarıkahya-Hacıoğlu and Erik. However, the taxonomical status of some of these species (i.e., S. savvalense and S. sylvaticum, and S. sepulcrale), which was assigned as a member of this complex by Kurtto, has been regarded as unresolved. To solve this uncertainty, different species delimitation methods were used, including statistical parsimony network analysis (TCS), generalized mixed Yule coalescent (GMYC), and Bayesian Phylogenetics and Phylogeography (BPP) of the ITS, trnL-F and trnS-G sequence data. In addition to members of this complex, S. ibericum, which is phylogenetically nested within the S. asperum aggregate, was also used. The TCS and GMYC analyses demonstrated more complicated clusters, whereas high posterior probabilities of BPP clusters were more compatible with the morphological data. In accordance with the morphological approach of Tarıkahya-Hacıoğlu and Erik, the species delimitation analyses based on molecular data support the recognition of S. asperum, S. ibericum, S. savvalense, and S. sylvaticum as different species.



PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11424
Author(s):  
Lukas Zangl ◽  
Elisabeth Glatzhofer ◽  
Raphael Schmid ◽  
Susanne Randolf ◽  
Stephan Koblmüller

Background Snow scorpionflies (genus Boreus) belong to a family of Mecoptera, Boreidae, that has been vastly neglected by entomological researchers due to their shift in seasonality to the winter months. Their activity during this time is regarded as a strategy for predator avoidance and regular sightings on snow fields suggest that this also facilitates dispersal. However, many aspects about snow scorpionflies, especially systematics, taxonomy, distribution of species, phylogenetics and phylogeography have remained fairly unexplored until today. In this study, we fill some of these gaps by generating a reference DNA barcode database for Austrian snow scorpionflies in the frame of the Austrian Barcode of Life initiative and by characterising morphological diversity in the study region. Methods Initial species assignment of all 67 specimens was based on male morphological characters previously reported to differ between Boreus species and, for females, the shape of the ovipositor. DNA barcoding of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene was carried out for all 67 samples and served as a basis for BIN assignment, genetic distance calculations, as well as alternative species delimitation analyses (ABGD, GMYC, bGMYC, bPTP) and a statistical parsimony network to infer phylogenetic relationships among individual samples/sampling sites. Results Morphological investigations suggested the presence of both Boreus hyemalis and Boreus westwoodi in Austria. DNA barcoding also separated the two species, but resulted in several divergent clades, the paraphyly of B. westwoodi in Austria, and high levels of phylogeographic structure on a small geographic scale. Even though the different molecular species delimitation methods disagreed on the exact number of species, they unequivocally suggested the presence of more than the traditionally recognized two Boreus species in Austria, thus indicating potential cryptic species within the genus Boreus in general and especially in B. westwoodi.



PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249431
Author(s):  
Haojie Wang ◽  
Bing Jiang ◽  
Jingxiao Gu ◽  
Tao Wei ◽  
Liliang Lin ◽  
...  

Tonkinacris is a small group in Acrididae. While a few species were occasionally sampled in some previous molecular studies, there is no revisionary research devoted to the genus. In this study, we explored the phylogeny of and the relationships among Chinese species of the genus Tonkinacris using the mitochondrial COI barcode and the complete sequences of ITS1 and ITS2 of the nuclear ribosomal DNA. The phylogeny was reconstructed in maximum likelihood and Bayesian inference frameworks, respectively. The overlap range between intraspecific variation and interspecific divergence was assessed via K2P distances. Species boundaries were delimitated using phylogenetic species concept, NJ tree, K2P distance, the statistical parsimony network as well as the GMYC model. The results demonstrate that the Chinese Tonkinacris species is a monophyletic group and the phylogenetic relationship among them is (T. sinensis, (T. meridionalis, (T. decoratus, T. damingshanus))). While T. sinensis, T. meridionalis and T. decoratus were confirmed being good independent species strongly supported by both morphological and molecular evidences, the validity of T. damingshanus was not perfectly supported by molecular evidence in this study.



Author(s):  
Marie L Verheye ◽  
Cédric D’Udekem D’Acoz

Abstract Among Antarctic amphipods of the genus Eusirus, a highly distinctive clade of giant species is characterized by a dorsal, blade-shaped tooth on pereionites 5–7 and pleonites 1–3. This lineage, herein named ‘crested Eusirus’, includes two potential species complexes, the Eusirus perdentatus and Eusirus giganteus complexes, in addition to the more distinctive Eusirus propeperdentatus. Molecular phylogenies and statistical parsimony networks (COI, CytB and ITS2) of crested Eusirus are herein reconstructed. This study aims to formally revise species diversity within crested Eusirus by applying several species delimitation methods (Bayesian implementation of the Poisson tree processes model, general mixed Yule coalescent, multi-rate Poisson tree processes and automatic barcode gap discovery) on the resulting phylogenies. In addition, results from the DNA-based methods are benchmarked against a detailed morphological analysis of all available specimens of the E. perdentatus complex. Our results indicate that species diversity of crested Eusirus is underestimated. Overall, DNA-based methods suggest that the E. perdentatus complex is composed of three putative species and that the E. giganteus complex includes four or five putative species. The morphological analysis of available specimens from the E. perdentatus complex corroborates molecular results by identifying two differentiable species, the genuine E. perdentatus and a new species, herein described as Eusirus pontomedon sp. nov.



Author(s):  
Maysa T Motoki ◽  
Yvonne-Marie Linton ◽  
Jan E Conn ◽  
Fredy Ruiz-Lopez ◽  
Richard C Wilkerson

Abstract The Neotropical Albitarsis Group is a complex assemblage of essentially isomorphic species which currently comprises eight recognized species—five formally described (Anopheles albitarsis Lynch-Arribalzaga, An. deaneorum Rosa-Freitas, An. janconnae Wilkerson and Sallum, An. marajoara Galvao and Damasceno, An. oryzalimnetes Wilkerson and Motoki) and three molecularly assigned (An. albitarsis F, G & I)—and one mitochondrial lineage (An. albitarsis H). To further explore species recognition within this important group, 658 base pairs of the mitochondrial DNA cytochrome oxidase subunit I (COI) were analyzed from 988 specimens from South America. We conducted statistical parsimony network analysis, generated estimates of haplotype, nucleotide, genetic differentiation, divergence time, and tested the effect of isolation by distance (IBD). Ten clusters were identified, which confirmed the validity of the eight previously determined species, and confirmed the specific status of the previous mitochondrial lineage An. albitarsis H. High levels of diversity were highlighted in two samples from Pará (= An. albitarsis J), which needs further exploration through additional sampling, but which may indicate another cryptic species. The highest intra-specific nucleotide diversity was observed in An. deaneorum, and the lowest in An. marajoara. Significant correlation between genetic and geographical distance was observed only in An. oryzalimnetes and An. albitarsis F. Divergence time within the Albitarsis Group was estimated at 0.58–2.25 Mya, during the Pleistocene. The COI barcode region was considered an effective marker for species recognition within the Albitarsis Group and a network approach was an analytical method to discriminate among species of this group.



Nematology ◽  
2020 ◽  
pp. 1-17
Author(s):  
Manoj Dhakal ◽  
Khuong B. Nguyen ◽  
David J. Hunt ◽  
Ralf-Udo Ehlers ◽  
Sergei E. Spiridonov ◽  
...  

Summary Presently, the genus Heterorhabditis contains 16 valid entomopathogenic nematode species. In this study we used samples from 11 species: H. amazonensis, H. bacteriophora, H. baujardi, H. beicherriana, H. downesi, H. floridensis, H. georgiana, H. indica, H. megidis, H. noenieputensis, and H. zealandica to amplify and sequence five gene fragments: the D2-D3 expansion segments of 28S rRNA, ITS rRNA, COI mtDNA genes and unc-87 and cmd-1 genes encoding thin filament (F-actin)-associated protein and calmodulin, respectively. Fifty new sequences for 11 species were generated. More than 980 sequences of five genes were analysed. Phylogenetic and sequence analysis of these genes using Bayesian inference, maximum likelihood and statistical parsimony confirmed a division of the genus into three clades (groups): ‘Indica’, ‘Bacteriophora’ and ‘Megidis’. The analysis of gene sequences downloaded from GenBank and identified as Heterorhabditis revealed many cases of species misidentifications and presence of reading mistakes in some sequences. Synonymisation of H. somsookae with H. baujardi, H. gerrardi, H. pakistanensis with H. indica, and H. sonorensis with H. taysearae, are confirmed by sequence and phylogenetic analysis. The ITS rRNA and COI genes could be considered as informative markers for species identification, barcoding and phylogeographical studies of Heterorhabditis.



ZooKeys ◽  
2020 ◽  
Vol 904 ◽  
pp. 117-130
Author(s):  
Cristiane Xerez Barroso ◽  
João Eduardo Pereira de Freitas ◽  
Helena Matthews-Cascon ◽  
Luis Ernesto Arruda Bezerra ◽  
Tito Monteiro da Cruz Lotufo

A reliable taxonomy, together with more accurate knowledge of the geographical distribution of species, is a fundamental element for the study of biodiversity. Multiple studies on the gastropod family Neritidae record three species of the genus Neritina in the Brazilian Province: Neritina zebra (Bruguière, 1792), Neritina virginea (Linnaeus, 1758), and Neritina meleagris Lamarck, 1822. While N. zebra has a well-established taxonomic status and geographical distribution, the same cannot be said regarding its congeners. A widely cited reference for the group in Brazil considers N. meleagris a junior synonym of N. virginea. Using a molecular approach (phylogenetic, species delimitation, and statistical parsimony network analyses), based on two mitochondrial markers (COI and 16S), this study investigated if N. virginea and N. meleagris are distinct species. The molecular results confirmed the existence of two strongly supported distinct taxonomic entities in the Brazilian Province, which is consistent with the morphological descriptions previously proposed for N. virginea and N. meleagris. These species occur in sympatry in the intertidal sandstone formations of Northeastern Brazil. Despite the great variation in the colour patterns of the shells, the present study reinforced previous observations that allowed the differentiation of these two species based on these patterns. It also emphasized the importance of the separation of these two clades in future studies, especially those conducted in the Brazilian Province, since these species may cohabit.



2019 ◽  
Vol 67 (7) ◽  
pp. 4726-4737 ◽  
Author(s):  
Runze Hu ◽  
Vikass Monebhurrun ◽  
Ryutaro Himeno ◽  
Hideo Yokota ◽  
Fumie Costen


2014 ◽  
Vol 105 (1) ◽  
pp. 110-120 ◽  
Author(s):  
J.C. Andersen ◽  
R.A. Gwiazdowski ◽  
K. Gdanetz ◽  
M.E. Gruwell

AbstractArmored scale insects and their primary bacterial endosymbionts show nearly identical patterns of co-diversification when viewed at the family level, though the persistence of these patterns at the species level has not been explored in this group. Therefore we investigated genealogical patterns of co-diversification near the species level between the primary endosymbiont Uzinura diaspidicola and its hosts in the Chionaspis pinifoliae–Chionaspis heterophyllae species complex. To do this we generated DNA sequence data from three endosymbiont loci (rspB, GroEL, and 16S) and analyzed each locus independently using statistical parsimony network analyses and as a concatenated dataset using Bayesian phylogenetic reconstructions. We found that for two endosymbiont loci, 16S and GroEL, sequences from U. diaspidicola were broadly associated with host species designations, while for rspB this pattern was less clear as C. heterophyllae (species S1) shared haplotypes with several other Chionaspis species. We then compared the topological congruence of the phylogenetic reconstructions generated from a concatenated dataset of endosymbiont loci (including all three loci, above) to that from a concatenated dataset of armored scale hosts, using published data from two nuclear loci (28S and EF1α) and one mitochondrial locus (COI–COII) from the armored scale hosts. We calculated whether the two topologies were congruent using the Shimodaira–Hasegawa test. We found no significant differences (P = 0.4892) between the topologies suggesting that, at least at this level of resolution, co-diversification of U. diaspidicola with its armored scale hosts also occurs near the species level. This is the first such study of co-speciation at the species level between U. diaspidicola and a group of armored scale insects.



2014 ◽  
Vol 104 (4) ◽  
pp. 486-493 ◽  
Author(s):  
B. Pastor ◽  
A.S. Martínez-Sánchez ◽  
G.A. Ståhls ◽  
S. Rojo

AbstractUnderstanding the biology of the housefly (Musca domestica L.) is crucial for the development of mass-rearing protocols in order to use this insect as a degradation agent for livestock waste. In this study, the biological and genetic differences between different laboratory strains of M. domestica were analysed. Additionally, hybrids were obtained by mixing the strains and their biological parameters were also measured. The three strains of M. domestica presented differences in their biological and morphological parameters, the main differences were: size, egg production and developmental time. The strain A (specimens from Central Europe) had the best qualities to be used in mass-rearing conditions: it produced the largest quantities of eggs (5.77±0.38 eggs per female per day), the individuals were larger (12.62±0.22 mg) and its developmental time was shorter (15.22±0.21 days). However, the strain C (specimens from SW Europe) produced the fewest eggs (3.15±0.42 eggs per female per day) and needed 18.16±0.49 days to develop from larva to adult, whilst the females from strain B (from South America) produced 4.25±0.47 eggs per day and needed 17.11±0.36 days to complete its development. Genetic analysis of the original laboratory strains showed four different mtDNA cytochrome c oxidase subunit I haplotypes. Statistical parsimony network analysis showed that the SW Europe and South-American strains shared haplotypes, whereas the Central Europe strain did not. Upon hybridizing the strains, variations in egg production and in developmental time were observed in between hybrids and pure strains, and when mixing Central European and South-American strains only males were obtained.



Sign in / Sign up

Export Citation Format

Share Document