On a singular eigenvalue problem

1968 ◽  
Vol 64 (2) ◽  
pp. 439-446 ◽  
Author(s):  
D. Naylor ◽  
S. C. R. Dennis

Sears and Titchmarsh (1) have formulated an expansion in eigenfunctions which requires a knowledge of the s-zeros of the equationHere ka > 0 is supposed given and β is a real constant such that 0 ≤ β < π. The above equation is encountered when one seeks the eigenfunctions of the differential equationon the interval 0 < α ≤ r < ∞ subject to the condition of vanishing at r = α. Solutions of (2) are the Bessel functions J±is(kr) and every solution w of (2) is such that r−½w(r) belongs to L2 (α, ∞). Since the problem is of the limit circle type at infinity it is necessary to prescribe a suitable asymptotic condition there to make the eigenfunctions determinate. In the present instance this condition is

Author(s):  
F. W. J. Olver

In a recent paper (1) I described a method for the numerical evaluation of zeros of the Bessel functions Jn(z) and Yn(z), which was independent of computed values of these functions. The essence of the method was to regard the zeros ρ of the cylinder functionas a function of t and to solve numerically the third-order non-linear differential equation satisfied by ρ(t). It has since been successfully used to compute ten-decimal values of jn, s, yn, s, the sth positive zeros* of Jn(z), Yn(z) respectively, in the ranges n = 10 (1) 20, s = 1(1) 20. During the course of this work it was realized that the least satisfactory feature of the new method was the time taken for the evaluation of the first three or four zeros in comparison with that required for the higher zeros; the direct numerical technique for integrating the differential equation satisfied by ρ(t) becomes unwieldy for the small zeros and a different technique (described in the same paper) must be employed. It was also apparent that no mere refinement of the existing methods would remove this defect and that a new approach was required if it was to be eliminated. The outcome has been the development of the method to which the first part (§§ 2–6) of this paper is devoted.


1959 ◽  
Vol 11 ◽  
pp. 148-155 ◽  
Author(s):  
Louis Weisner

On replacing the parameter n in Bessel's differential equation1.1by the operator y(∂/∂y), the partial differential equation Lu = 0 is constructed, where1.2This operator annuls u(x, y) = v(x)yn if, and only if, v(x) satisfies (1.1) and hence is a cylindrical function of order n. Thus every generating function of a set of cylindrical functions is a solution of Lu = 0.It is shown in § 2 that the partial differential equation Lu = 0 is invariant under a three-parameter Lie group. This group is then applied to the systematic determination of generating functions for Bessel functions, following the methods employed in two previous papers (4; 5).


Author(s):  
B. D. Sleeman

SynopsisThis paper discusses the existence, under fairly general conditions, of solutions of the two-parameter eigenvalue problem denned by the differential equation,and three point Sturm-Liouville boundary conditions.


Author(s):  
R. Steinitz

It is well known (Watson, A treatise on Bessel functions) that if Jν(z) is a Bessel function of the first kind, and A is a real constant, then all roots of the equation are either real or purely imaginary.


Author(s):  
F. Neuman

1. In this article the following problem proposed by W. N. Everitt is considered: ‘Under what conditions is it possible to transform a differential equationwhich is limit-circle at b1 into an equation of the formwhich is limit-point at b2?'A differential equation of the above type on [a, b) is said to be limit-circle at b iff b is a singular point and every solution . If b is singular and there exists a , then the equation is said to be limit-point at b. See [3] or [4] page 501, also for further details.


2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


Author(s):  
F. V. Atkinson ◽  
C. T. Fulton

SynopsisAsymptotic formulae for the positive eigenvalues of a limit-circle eigenvalue problem for –y” + qy = λy on the finite interval (0, b] are obtained for potentials q which are limit circle and non-oscillatory at x = 0, under the assumption xq(x)∈L1(0,6). Potentials of the form q(x) = C/xk, 0<fc<2, are included. In the case where k = 1, an independent check based on the limit-circle theory of Fulton and an asymptotic expansion of the confluent hypergeometric function, M(a, b; z), verifies the main result.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


1964 ◽  
Vol 4 (2) ◽  
pp. 179-194 ◽  
Author(s):  
J. C. Butcher

An (explicit) Runge-Kutta process is a means of numerically solving the differential equation , at the point x = x0+h, where y, f may be vectors.


Author(s):  
J. R. Philip

AbstractWe study the equationHere s is not necessarily integral; m is initially unrestricted. Material-conserving instantaneous source solutions of A are reviewed as an entrée to material-losing solutions. Simple physical arguments show that solutions for a finite slug losing material at infinity at a finite nonzero rate can exist only for the following m-ranges: 0 < s < 2, −2s−1 < m ≤ −1; s > 2, −1 < m < −2s−1. The result for s = 1 was known previously. The case s = 2, m = −1, needs further investigation. Three different similarity schemes all lead to the same ordinary differential equation. For 0 < s < 2, parameter γ (0 < γ < ∞) in that equation discriminates between the three classes of solution: class 1 gives the concentration scale decreasing as a negative power of (1 + t/T); 2 gives exponential decrease; and 3 gives decrease as a positive power of (1 − t/T), the solution vanishing at t = T < ∞. Solutions for s = 1, are presented graphically. The variation of concentration and flux profiles with increasing γ is physically explicable in terms of increasing flux at infinity. An indefinitely large number of exact solutions are found for s = 1,γ = 1. These demonstrate the systematic variation of solution properties as m decreases from −1 toward −2 at fixed γ.


Sign in / Sign up

Export Citation Format

Share Document