Effects of Soil Moisture Stress on Two Varieties of Upland Cotton in Israel II. The Northern Negev Region

1971 ◽  
Vol 7 (3) ◽  
pp. 225-239 ◽  
Author(s):  
D. Shimshi ◽  
A. Marani

SUMMARYThe effects of moisture stress at various stages of development were studied on two varieties of cotton in the arid Negev region of Israel. Experiments over two years indicated that the stage at which moisture stress occurred determined its effect: when at the beginning of flowering, yield was considerably reduced; at the peak of flowering there was a less pronounced effect; and when stress occurred during boll development it had an effect in only one year, when reserves of moisture in the deep soil layers were low. Lint yield ranged from 380 kg./ha. without irrigation to 2150 kg./ha. with five irrigations. Effects on lint length and lint strength were also studied. Two physiological indices, stomatal aperture and refractive index of leaf sap, were used to determine the onset of moisture stress.

1971 ◽  
Vol 7 (4) ◽  
pp. 289-301 ◽  
Author(s):  
A. Marani ◽  
A. Amirav

SUMMARYThe effects of moisture stress during various stages of the development of two varieties of upland cotton (Acala 4–42 and Deltapine Smoothleaf) were studied in two irrigation experiments in the Bet-She'an valley, where summer temperatures were high and evapotranspiration in the fully irrigated treatments was up to 8–10 mm./day in July and August. Optimum time for first irrigation in the Bet-She'an valley was two or three weeks before flowering and six or seven irrigations, if timed to prevent moisture stress, were sufficient to give high yields and good lint quality. Lint yield ranged from 270 kg./ha. in non-irrigated to 2000 kg./ha. in the fully irrigated treatments in 1966.


2021 ◽  
Vol 14 (6) ◽  
pp. 3269-3294
Author(s):  
Anna B. Harper ◽  
Karina E. Williams ◽  
Patrick C. McGuire ◽  
Maria Carolina Duran Rojas ◽  
Debbie Hemming ◽  
...  

Abstract. Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the “soil14_psi” experiments), when the critical threshold value for inducing soil moisture stress was reduced (“soil14_p0”), and when plants were able to access soil moisture in deeper soil layers (“soil14_dr*2”). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes.


1971 ◽  
Vol 7 (3) ◽  
pp. 213-224 ◽  
Author(s):  
A. Marani ◽  
A. Amirav

SUMMARYEffects of moisture stress during different stages of cotton development were examined in two experiments when temperatures were mild and evapotranspiration less than 6 mm./day. Two varieties of upland cotton, Acala 4–42 and Deltapine Smoothleaf, were affected similarly. Moisture stress at the beginning of flowering reduced growth rate and the numbers of flowers and bolls. During the second half of the flowering period it reduced the percentage of boll retention, boll number, boll weight, seed index, lint index and lint length. Stress during boll development had similar effects and caused earlier maturity. Lint yield was reduced significantly by moisture stress during each of the periods but tensile strength of lint was not affected. Three irrigations, if properly timed so that no appreciable moisture stress occurred, were sufficient for high yields and good quality of lint, and the first could be postponed until after flowering began without any loss in yield.


2016 ◽  
Vol 20 (8) ◽  
pp. 3309-3323 ◽  
Author(s):  
Xuening Fang ◽  
Wenwu Zhao ◽  
Lixin Wang ◽  
Qiang Feng ◽  
Jingyi Ding ◽  
...  

Abstract. Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80–500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120–140 and 480–500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80–220 cm); (ii) a transition layer (220–400 cm); and (iii) a stable layer (400–500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially for the choice of vegetation types, planting zones, and proper human management measures.


2009 ◽  
Vol 6 (8) ◽  
pp. 1423-1444 ◽  
Author(s):  
T. Keenan ◽  
R. García ◽  
A. D. Friend ◽  
S. Zaehle ◽  
C. Gracia ◽  
...  

Abstract. Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE"), and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+"), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.


2011 ◽  
Vol 63 (6) ◽  
pp. 392-392 ◽  
Author(s):  
Anil Gunaratne ◽  
Upul Kumari Ratnayaka ◽  
Nihal Sirisena ◽  
Jennet Ratnayaka ◽  
Xiangli Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document