DISTRIBUTION OF DATE PALMS IN THE MIDDLE EAST BASED ON FUTURE CLIMATE SCENARIOS

2014 ◽  
Vol 51 (2) ◽  
pp. 244-263 ◽  
Author(s):  
FARZIN SHABANI ◽  
LALIT KUMAR ◽  
SUBHASHNI TAYLOR

SUMMARYOne consequence of climate change is change in the phenology and distribution of plants, including the date palm (Phoenix dactyliferaL.). Date palm, as a crop specifically adapted to arid conditions in desert oases and to very high temperatures, may be dramatically affected by climate changes. Some areas that are climatically suitable for date palm growth at the present time will become climatically unsuitable in the future, while other areas that are unsuitable under current climate will become suitable in the future. This study used CLIMEX to estimate potential date palm distribution under current and future climate scenarios using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results of this study indicated that Saudi Arabia, Iraq and Iran are most affected countries as a result of climate change. In Saudi Arabia, 129 million ha (68%) of currently suitable area is projected to become unsuitable by 2100. However, this is based on climate modelling alone. The actual decrease in area may be much smaller when abiotic and other factors are taken into account. On the other hand, 13 million ha (33%) of currently unsuitable area is projected to become suitable by 2100 in Iran. Additionally, by 2050, Israel, Jordan and western Syria will become climatically more suitable. Cold and heat stresses will play a significant role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations to identify areas for cultivation of this profitable crop in the future, and to address those areas that will need greater attention because they are becoming marginal regions for date palm cultivation.

2014 ◽  
Vol 94 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Qi Jing ◽  
Gilles Bélanger ◽  
Budong Qian ◽  
Vern Baron

Jing, Q., Bélanger, G., Qian, B. and Baron, V. 2014. Timothy yield and nutritive value with a three-harvest system under the projected future climate in Canada. Can. J. Plant Sci. 94: 213–222. Timothy (Phleum pratense L.) is harvested twice annually in Canada but with projected climate change, an additional harvest may be possible. Our objective was to evaluate the impact on timothy dry matter (DM) yield and key nutritive value attributes of shifting from a two- to a three-harvest system under projected future climate conditions at 10 sites across Canada. Future climate scenarios were generated with a stochastic weather generator (AAFC-WG) using two global climate models under the forcing of two Intergovernmental Panel on Climate Change emission scenarios and, then, used by the CATIMO (Canadian Timothy Model) grass model to simulate DM yield and key nutritive value attributes. Under future climate scenarios (2040–2069), the additional harvest and the resulting three-harvest system are expected to increase annual DM yield (+0.46 to +2.47 Mg DM ha−1) compared with a two-harvest system across Canada but the yield increment will on average be greater in eastern Canada (1.88 Mg DM ha−1) and Agassiz (2.02 Mg DM ha−1) than in the prairie provinces of Canada (0.84 Mg DM ha−1). The DM yield of the first harvest in a three-harvest system is expected to be less than in the two-harvest system, while that of the second harvest would be greater. Decreases in average neutral detergent fibre (NDF) concentration (−19 g kg−1 DM) and digestibility (dNDF, −5 g kg−1 NDF) are also expected with the three-harvest system under future conditions. Our results indicate that timothy will take advantage of projected climate change, through taking a third harvest, thereby increasing annual DM production.


2019 ◽  
Vol 11 (2) ◽  
pp. 341-366 ◽  
Author(s):  
Hashim Isam Jameel Al-Safi ◽  
Hamideh Kazemi ◽  
P. Ranjan Sarukkalige

Abstract The application of two distinctively different hydrologic models, (conceptual-HBV) and (distributed-BTOPMC), was compared to simulate the future runoff across three unregulated catchments of the Australian Hydrologic Reference Stations (HRSs), namely Harvey catchment in WA, and Beardy and Goulburn catchments in NSW. These catchments have experienced significant runoff reduction during the last decades due to climate change and human activities. The Budyko-elasticity method was employed to assign the influences of human activities and climate change on runoff variations. After estimating the contribution of climate change in runoff reduction from the past runoff regime, the downscaled future climate signals from a multi-model ensemble of eight global climate models (GCMs) of the Coupled Model Inter-comparison Project phase-5 (CMIP5) under the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios were used to simulate the future daily runoff at the three HRSs for the mid-(2046–2065) and late-(2080–2099) 21st-century. Results show that the conceptual model performs better than the distributed model in capturing the observed streamflow across the three contributing catchments. The performance of the models was relatively compatible in the overall direction of future streamflow change, regardless of the magnitude, and incompatible regarding the change in the direction of high and low flows for both future climate scenarios. Both models predicted a decline in wet and dry season's streamflow across the three catchments.


2021 ◽  
Author(s):  
Amin Wen ◽  
Tonghua Wu ◽  
Xiaofan Zhu ◽  
Ren Li ◽  
Xiaodong Wu ◽  
...  

Abstract Bryophytes play important roles in ecosystem due to their extensive geographical coverage on the Qinghai-Tibetan Plateau (QTP). While there are few studies attributing the potential distribution and landscape changes on the QTP in response to climate change. Based on climate data averaged of nine global climate models (GCMs) for shared socio-economic pathways SSP2-4.5 under current (the years 1970–2000) and future climate scenarios (the years 2021–2040, 2041–2060, 2061–2080, 2081–2100), and other environmental variables, this study has applied the maximum entropy (MaxEnt) model to assess the potential impact of climate change on the distribution of Bryophytes on the QTP. The key environmental factors which determined Bryophytes’s habitats and range shifts were also examined. The results showed that Bryophytes occupied about 9.12 × 105 km2 (35.43% of total QTP) at present, mainly accumulating in non-permafrost regions of southeast (SE) QTP. Niche suitability of the Bryophytes was dominated by soil moisture, ultraviolet-B radiation seasonality, temperature seasonality and precipitation of the coldest quarter. The occupied habitats of Bryophytes under future climate scenarios generally increased migrating towards Midwest and relatively higher elevation regions of QTP, where dedicated overall surface air warming and moistening, solar dimming. Additionally, the confusion matrix showed that most parts of the gained occupied habitats under future climate scenarios were low suitable habitats, and small parts for high suitable habitats, however reduced for the medium suitable habitats.


2013 ◽  
Vol 152 (4) ◽  
pp. 543-557 ◽  
Author(s):  
F. SHABANI ◽  
L. KUMAR ◽  
S. TAYLOR

SUMMARYThe objective of the present paper is to use CLIMEX software to project how climate change might impact the future distribution of date palm (Phoenix dactylifera L.) in Iran. Although the outputs of this software are only based on the response of a species to climate, the CLIMEX results were refined in the present study using two non-climatic parameters: (a) the location of soils containing suitable physicochemical properties and (b) the spatial distribution of soil types having suitable soil taxonomy for dates, as unsuitable soil types impose problems in air permeability, hydraulic conductivity and root development. Here, two different Global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), were employed with the A2 emission scenario to model the potential date palm distribution under current and future climates in Iran for the years 2030, 2050, 2070 and 2100. The results showed that only c. 0·30 of the area identified as suitable by CLIMEX will actually be suitable for date palm cultivation: the rest of the area comprises soil types that are not favourable for date palm cultivation. Moreover, the refined outputs indicate that the total area suitable for date palm cultivation will increase to 31·3 million ha by 2100, compared with 4·8 million ha for current date palm cultivation. The present results also indicate that only heat stress will have an impact on date palm distribution in Iran by 2100, with the areas currently impacted by cold stress diminishing by 2100.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2008 ◽  
Vol 8 (2) ◽  
pp. 7781-7804 ◽  
Author(s):  
K.-J. Liao ◽  
E. Tagaris ◽  
K. Manomaiphiboon ◽  
C. Wang ◽  
J.-H. Woo ◽  
...  

Abstract. Impacts of uncertain climate forecasts on future regional air quality are investigated using downscaled MM5 meteorological fields from the NASA GISS and MIT IGSM global climate models and the CMAQ model in 2050 in the continental US. Three future climate scenarios: high-extreme, low-extreme and base, are developed for regional air quality simulations. GISS, with the IPCC A1B scenario, is used for the base case. IGSM results, in the form of probabilistic distributions, are used to perturb the base case climate to provide 0.5th and 99.5th percentile climate scenarios. Impacts of the extreme climate scenarios on concentrations of summertime fourth-highest daily maximum 8-h average ozone are predicted to be up to 10 ppbv (about one-eighth of the current NAAQS of ozone) in some urban areas, though average differences in ozone concentrations are about 1–2 ppbv on a regional basis. Differences between the extreme and base scenarios in annualized PM2.5 levels are very location dependent and predicted to range between −1.0 and +1.5 μg m−3. Future annualized PM2.5 is less sensitive to the extreme climate scenarios than summertime peak ozone since precipitation scavenging is only slightly affected by the extreme climate scenarios examined. Relative abundances of biogenic VOC and anthropogenic NOx lead to the areas that are most responsive to climate change. Such areas may find that climate change can significantly offset air quality improvements from emissions reductions, particularly during the most severe episodes.


2009 ◽  
Vol 59 (3) ◽  
pp. 443-451 ◽  
Author(s):  
O. M. Thorne ◽  
R. A. Fenner

In response to a rapidly changing and highly variable climate, engineers are being asked to perform climate-change impact assessments on existing water industry systems. There is currently no single method of best practice for engineers to interpret output from global climate models (GCMs) and calculate probabilistic distributions of future climate changes as required for risk-based impact assessments. The simplified climate change impact assessment tool (SCIAT) has been developed to address the specific needs of the water industry and provides a tool to translate climate change projections into ‘real world’ impacts or for detailed statistical analysis. Through the use of SCIAT, water system operators are provided with knowledge of potential impacts and an associated probability of occurrence, enabling them to make informed, risk-based adaptation and planning decisions. This paper demonstrates the application of SCIAT to the consideration of the impacts of climate change on reservoir water quality under future climate scenarios.


2016 ◽  
Vol 48 (5) ◽  
pp. 1327-1342 ◽  
Author(s):  
Spyridon Paparrizos ◽  
Andreas Matzarakis

Assessment of future variations of streamflow is essential for research regarding climate and climate change. This study is focused on three agricultural areas widespread in Greece and aims to assess the future response of annual and seasonal streamflow and its impacts on the hydrological regime, in combination with other fundamental aspects of the hydrological cycle in areas with different climate classification. ArcSWAT ArcGIS extension was used to simulate the future responses of streamflow. Future meteorological data were obtained from various regional climate models, and analysed for the periods 2021–2050 and 2071–2100. In all the examined areas, streamflow is expected to be reduced. Areas characterized by continental climate will face minor reductions by the mid-century that will become very intense by the end and thus these areas will become more resistant to future changes. Autumn season will face the strongest reductions. Areas characterized by Mediterranean conditions will be very vulnerable in terms of future climate change and winter runoff will face the most significant decreases. Reduced precipitation is the main reason for decreased streamflow. High values of actual evapotranspiration by the end of the century will act as an inhibitor towards reduced runoff and partly counterbalance the water losses.


2013 ◽  
Vol 10 (5) ◽  
pp. 6807-6845
Author(s):  
M. C. Demirel ◽  
M. J. Booij ◽  
A. Y. Hoekstra

Abstract. The impacts of climate change on the seasonality of low flows are analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch–German border. Three seasonality indices for low flows are estimated, namely seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted persistence (WP). These indices are related to the discharge regime, timing and variability in timing of low flow events respectively. The three indices are estimated from: (1) observed low flows; (2) simulated low flows by the semi distributed HBV model using observed climate; (3) simulated low flows using simulated inputs from seven climate scenarios for the current climate (1964–2007); (4) simulated low flows using simulated inputs from seven climate scenarios for the future climate (2063–2098) including different emission scenarios. These four cases are compared to assess the effects of the hydrological model, forcing by different climate models and different emission scenarios on the three indices. The seven climate scenarios are based on different combinations of four General Circulation Models (GCMs), four Regional Climate Models (RCMs) and three greenhouse gas emission scenarios. Significant differences are found between cases 1 and 2. For instance, the HBV model is prone to overestimate SR and to underestimate WP and simulates very late WMODs compared to the estimated WMODs using observed discharges. Comparing the results of cases 2 and 3, the smallest difference is found in the SR index, whereas large differences are found in the WMOD and WP indices for the current climate. Finally, comparing the results of cases 3 and 4, we found that SR has decreased substantially by 2063–2098 in all seven subbasins of the River Rhine. The lower values of SR for the future climate indicate a shift from winter low flows (SR > 1) to summer low flows (SR < 1) in the two Alpine subbasins. The WMODs of low flows tend to be earlier than for the current climate in all subbasins except for the Middle Rhine and Lower Rhine subbasins. The WP values are slightly larger, showing that the predictability of low flow events increases as the variability in timing decreases for the future climate. From comparison of the uncertainty sources evaluated in this study, it is obvious that the RCM/GCM uncertainty has the largest influence on the variability in timing of low flows for future climate.


Sign in / Sign up

Export Citation Format

Share Document