scholarly journals Recombination and the evolution of satellite DNA

1986 ◽  
Vol 47 (3) ◽  
pp. 167-174 ◽  
Author(s):  
Wolfgang Stephan

SummaryIn eukaryotic chromosomes, large blocks of satellite DNA are associated with regions of reduced meiotic recombination. No function of highly repeated, tandemly arranged DNA sequences has been identified so far at the cellular level, though the structural properties of satellite DNA are relatively well known. In studying the joint action of meiotic recombination, genetic drift and natural selection on the copy number of a family of highly repeated DNA (HRDNA), this paper looks at the structure–function debate for satellite DNA from the standpoint of molecular population genetics. It is shown that (i) HRDNA accumulates most probably in regions of near zero crossing over (heterochromatin), and that (ii), due to random genetic drift the effect of unequal crossover on copy numbers is stronger, the smaller the population size. As a consequence, highly repeated sequences are likely to persist longest (over evolutionary times) in small populations. The results are based on a fairly general class of models of unequal crossing over and natural selection which have been treated both analytically and by computer simulation.

Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 333-341
Author(s):  
W Stephan ◽  
S Cho

Abstract A simulation model of sequence-dependent amplification, unequal crossing over and mutation is analyzed. This model predicts the spontaneous formation of tandem-repetitive patterns of noncoding DNA from arbitrary sequences for a wide range of parameter values. Natural selection is found to play an essential role in this self-organizing process. Natural selection which is modeled as a mechanism for controlling the length of a nucleotide string but not the sequence itself favors the formation of tandem-repetitive structures. Two measures of sequence heterogeneity, inter-repeat variability and repeat length, are analyzed in detail. For fixed mutation rate, both inter-repeat variability and repeat length are found to increase with decreasing rates of (unequal) crossing over. The results are compared with data on micro-, mini- and satellite DNAs. The properties of minisatellites and satellite DNAs resemble the simulated structures very closely. This suggests that unequal crossing over is a dominant long-range ordering force which keeps these arrays homogeneous even in regions of very low recombination rates, such as at satellite DNA loci. Our analysis also indicates that in regions of low rates of (unequal) crossing over, inter-repeat variability is maintained at a low level at the expense of much larger repeat units (multimeric repeats), which are characteristic of satellite DNA. In contrast, the microsatellite data do not fit the proposed model well, suggesting that unequal crossing over does not act on these very short tandem arrays.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 791-802
Author(s):  
J A Coyne ◽  
S Aulard ◽  
A Berry

Abstract In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations.


Genetics ◽  
1991 ◽  
Vol 127 (1) ◽  
pp. 39-51 ◽  
Author(s):  
A Stapleton ◽  
T D Petes

Abstract Although genetic distances are often assumed to be proportional to physical distances, chromosomal regions with unusually high (hotspots) or low (coldspots) levels of meiotic recombination have been described in a number of genetic systems. In general, the DNA sequences responsible for these effects have not been determined. We report that the 5' region of the beta-lactamase (ampR) gene of the bacterial transposon Tn3 is a hotspot for meiotic recombination when inserted into the chromosomes of the yeast Saccharomyces cerevisiae. When these sequences are homozygous, both crossing over and gene conversion are locally stimulated. The 5' end of the beta-lactamase gene is about 100-fold "hotter" for crossovers than an average yeast DNA sequence.


2005 ◽  
Vol 171 (3) ◽  
pp. 447-458 ◽  
Author(s):  
Nadine K. Kolas ◽  
Anton Svetlanov ◽  
Michelle L. Lenzi ◽  
Frank P. Macaluso ◽  
Steven M. Lipkin ◽  
...  

Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2–MSH3 or MSH2–MSH6) or crossing over (MSH4–MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4–MSH5. The second complex involves MLH3 together with MSH2–MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2−/− males, but not females, providing an explanation for the sexual dimorphism seen in Pms2−/− mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2–MSH3 and is decreased in Msh2−/− and Msh3−/− mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis.


Genome ◽  
1993 ◽  
Vol 36 (6) ◽  
pp. 1074-1079 ◽  
Author(s):  
T. Schmidt ◽  
J. S. Heslop-Harrison

Satellite DNA from wild beet species was separated from restriction endonuclease digested genomic DNA by polyacrylamide gel electrophoresis. Two nonhomologous HaeIII satellite DNA repeats were cloned from the wild beet Beta trigyna. The type I repeat is 140–149 bp long and AT rich, while the type II is 162 bp in size and GC rich. A third repetitive HaeIII element cloned from the related wild beet B. corolliflora was shown to be organized as a HinfI satellite DNA family in the cultivated beet B. vulgaris ssp. vulgaris and the wild beet B. vulgaris ssp. maritima. This type III satellite monomer is 149 bp long and contains a high number of short direct subrepeats. The monomer was found in different genomic organizations and copy numbers in all sections of the genus Beta indicating an amplification early in the phylogeny. The HaeIII repeats from B. trigyna are characterized by a lower variability and form long tandem arrays in the genomes of Corollinae species. The investigation of the distribution of all three sequence families provided data that may contribute to the solution of taxonomic problems of the genus Beta and be useful in the characterization of hybrids and derived lines with alien wild beet chromosomes.Key words: satellite DNA, Beta vulgaris, Beta corolliflora, Beta trigyna, evolution, repetitive DNA.


Genetics ◽  
1986 ◽  
Vol 114 (2) ◽  
pp. 375-392
Author(s):  
B A Kunz ◽  
G R Taylor ◽  
R H Haynes

ABSTRACT The biosynthesis of thymidylate in the yeast Saccharomyces cerevisiae can be inhibited by antifolate drugs. We have found that antifolate treatment enhances the formation of leucine prototrophs in a haploid strain of yeast carrying, on the same chromosome, two different mutant leu2 alleles separated by Escherichia coli plasmid sequences. That this effect is a consequence of thymine nucleotide depletion was verified by the finding that provision of exogenous thymidylate eliminates the increased production of Leu+ colonies. DNA hybridization analysis revealed that recombination, including reciprocal exchange, gene conversion and unequal sister-chromatid crossing over, between the duplicated genes gave rise to the induced Leu+ segregants. Although gene conversion unaccompanied by crossing over was responsible for the major fraction of leucine prototrophs, events involving reciprocal exchange exhibited the largest increase in frequency. These data show that recombination is induced between directly repeated DNA sequences under conditions of thymine nucleotide depletion. In addition, the results of this and previous studies are consistent with the possibility that inhibition of thymidylate biosynthesis in yeast may create a metabolic condition that provokes all forms of mitotic recombination.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 947-957 ◽  
Author(s):  
John G Jelesko ◽  
Kristy Carter ◽  
Whitney Thompson ◽  
Yuki Kinoshita ◽  
Wilhelm Gruissem

Abstract Paralogous genes organized as a gene cluster can rapidly evolve by recombination between misaligned paralogs during meiosis, leading to duplications, deletions, and novel chimeric genes. To model unequal recombination within a specific gene cluster, we utilized a synthetic RBCSB gene cluster to isolate recombinant chimeric genes resulting from meiotic recombination between paralogous genes on sister chromatids. Several F1 populations hemizygous for the synthRBCSB1 gene cluster gave rise to Luc+ F2 plants at frequencies ranging from 1 to 3 × 10-6. A nonuniform distribution of recombination resolution sites resulted in the biased formation of recombinant RBCS3B/1B::LUC genes with nonchimeric exons. The positioning of approximately half of the mapped resolution sites was effectively modeled by the fractional length of identical DNA sequences. In contrast, the other mapped resolution sites fit an alternative model in which recombination resolution was stimulated by an abrupt transition from a region of relatively high sequence similarity to a region of low sequence similarity. Thus, unequal recombination between paralogous RBCSB genes on sister chromatids created an allelic series of novel chimeric genes that effectively resulted in the diversification rather than the homogenization of the synthRBCSB1 gene cluster.


1998 ◽  
Vol 60 (9) ◽  
pp. 681-683 ◽  
Author(s):  
Timothy J. Maret ◽  
Steven W. Rissing

Sign in / Sign up

Export Citation Format

Share Document