scholarly journals The inbreeding decline and average dominance of genes affecting male life-history characters in Drosophila melanogaster

1995 ◽  
Vol 65 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Kimberly A. Hughes

SummaryThis paper describes the results of assays of male life-history characters in a large outbred laboratory population of D. melanogaster. Lines of flies homozygous for the entire third chromosome and lines of flies carrying two different third chromosomes were assayed for agespecific male mating ability (MMA), age-specific survivorship, male fertility, and body mass. The results of these assays were used to calculate the inbreeding decline associated with each of these traits, the average dominance of deleterious alleles that affect the traits, the genotypic and environmental components of variance for the homozygous lines, and phenotypic and genotypic correlations among the characters. Significant inbreeding decline was found for all characters except the Gompertz intercept and fertility. Early and late MMA show larger effects of inbreeding than any other trait. The inbreeding load for MMA is about the same magnitude as that for egg-to-adult viability, but is substantially less than that associated with total fitness. The estimated inbreeding decline and average dominance of male life-history characters are comparable to estimates for other Drosophila fitness components.

1985 ◽  
Vol 46 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Linda Partridge ◽  
Trudy F. C. Mackay ◽  
Susan Aitken

SUMMARYThe male mating ability and male fertility of 40 third chromosome homozygote lines has been measured. There was significant between-line differentiation for both characters, and comparison with a heterozygous stock indicated inbreeding depression and hence dominance variation for them. The characters showed significant positive correlation both with each other and with other fitness components and total fitness, as measured by Mackay (1985). This pattern of large positive correlations between fitness components is not expected to occur in outbred populations.


1982 ◽  
Vol 40 (2) ◽  
pp. 201-205 ◽  
Author(s):  
Paul M. Sharp

SUMMARYSelective differences among male Drosophila melanogaster due to differences in ability to compete for mates may often have been under-estimated in the past because, under the test procedure used, females did not represent a limited resource. In the experiment reported here, no difference was detected between inbred and outbred males ‘competing’ to mate with an equal number of females. When the receptive female: male ratio was halved a large reduction in male mating ability due to inbreeding became apparent.


Genetics ◽  
1984 ◽  
Vol 106 (4) ◽  
pp. 601-612
Author(s):  
Paul M Sharp

ABSTRACT The effect of full-sib inbreeding on competitive male-mating ability (CI♂) in Drosophila melanogaster was investigated in two experiments. In the first, five inbred lines (with reserves) were assessed up to 18 generations. Linear inbreeding depression, of 5.9% per 10% increase in homozygosity, was observed. In a second experiment, 21 inbred lines were tested after three generations of full-sib mating (without reserves), and the decline with inbreeding was more severe, the male competitive index (CI♂) decreasing by 10.7% per 10% increase in F. The difference between these results is attributed to natural selection acting on variation within the inbred lines in extent of homozygosity, which can arise because of the peculiarly strong influence of linkage in Drosophila. Furthermore, differentiation between the lines may have reflected this variation rather than the various effects of different alleles fixed.—These results imply that the genetic variation in male-mating ability is largely due to dominance (no epistasis was detected) and are consonant with the proposition that intermale sexual selection is a very important component of fitness in D. melanogaster. There was no evidence of a positive correlation between male body size and competitive mating ability.


Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 527-534 ◽  
Author(s):  
A G Clark

Abstract Deficiency mapping with Y autosome translocations has shown that the Y chromosome of Drosophila melanogaster carries genes that are essential to male fertility. While the qualitative behavior of these lesions provides important insight into the physiological importance of the Y chromosome, quantitative variation in effects on male fertility among extant Y chromosomes in natural populations may have a significant effect on the evolution of the Y chromosome. Here a series of 36 Y chromosome replacement lines were tested in two ways designed to detect subtle variation in effects on male fertility and total male fitness. The first test involved crossing males from the 36 lines to an excess of females in an attempt to measure differences in male mating success (virility) and male fecundity. The second test challenged males bearing each of the 36 Y chromosomes to competition in populations with males bearing a standard, phenotypically marked (BsY) chromosome. These tests indicated that the Y chromosome lines did not differ significantly in either male fertility or total fitness, but that interactions with autosomes approached significance. A deterministic population genetic model was developed allowing Y autosome interaction in fertility, and it is shown that, consistent with the experimental observations, this model cannot protect Y-linked polymorphism.


2019 ◽  
Vol 286 (1904) ◽  
pp. 20190591 ◽  
Author(s):  
Alima Qureshi ◽  
Andrew Aldersley ◽  
Brian Hollis ◽  
Alongkot Ponlawat ◽  
Lauren J. Cator

Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae . aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.


Sign in / Sign up

Export Citation Format

Share Document