scholarly journals Genetic causes and consequences of the breakdown of self-incompatibility: case studies in the Brassicaceae

2008 ◽  
Vol 90 (1) ◽  
pp. 47-60 ◽  
Author(s):  
BARBARA K. MABLE

SummaryThe genetic consequences of inbreeding is a subject that has received thorough theoretical attention and has been of interest to empirical biologists since the time of Darwin. Particularly for species with genetically controlled mechanisms to promote outcrossing (self-incompatibility or SI systems), it is expected that high levels of genetic load should accumulate through sheltering of deleterious recessive mutations. Nevertheless, transitions to selfing are common across angiosperms, which suggests that the potentially negative consequences of reduced heterozygosity and genetic diversity are balanced by other factors, such as reproductive assurance. This mini-review focuses on empirical research in the Brassicaceae to emphasize some of the genetic consequences of shifts to inbreeding in terms of mechanisms for loss of SI, changes in genetic diversity following loss of SI, and inbreeding depression in relation to outcrossing history. Despite the long history of theoretical attention, there are still some surprisingly large gaps in our understanding in each of these areas. Rather than providing a complete overview, examples are drawn predominantly from published and emerging data from Arabidopsis thaliana and its relatives to highlight recent progress and remaining questions. We are currently on the brink of major breakthroughs in understanding due both to advances in sequencing technology and a shift in focus from crop plants to natural populations, where critical factors such as population structure, phylogeography, demographic history, partial compatibility and individual variation can be taken into account when investigating the nature of the selective forces regulating mating system evolution.

2021 ◽  
Author(s):  
Jibin Miao ◽  
Perla Farhat ◽  
Wentao Wang ◽  
Markus Ruhsam ◽  
Richard Milne ◽  
...  

Abstract Background and Aims Understanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai-Tibet Plateau (QTP). Methods The genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow endemic junipers from the QTP that are sister to each other, was surveyed using RNA-seq data. Coalescent-based analyses were used to test speciation, migration, and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species. Key Results Analyses of 149,052 single nucleotide polymorphisms showed that the two species are well-differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma and only one bottleneck for J. erectopatens. The identified positive selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter. Conclusions This study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in the understanding of the current distribution pattern and genetic diversity of threatened species in mountainous regions.


Genetics ◽  
2021 ◽  
Author(s):  
Xiaoshen Yin ◽  
Dennis Hedgecock

Abstract Understanding the genetic bases of inbreeding depression, heterosis, and genetic load is integral to understanding how genetic diversity is maintained in natural populations. The Pacific oyster Crassostrea gigas, like many long-lived plants, has high fecundity and high early mortality (type-III survivorship), manifesting a large, overt, genetic load; the oyster harbors an even greater concealed genetic load revealed by inbreeding. Here, we map viability QTL (vQTL) in six interrelated F2 oyster families, using high-density linkage maps of single nucleotide polymorphisms generated by genotyping-by-sequencing (GBS) methods. Altogether, we detect 70 vQTL and provisionally infer 89 causal mutations, 11 to 20 per family. Genetic mortality caused by independent (unlinked) vQTL ranges from 94.2% to 97.8% across families, consistent with previous reports. High-density maps provide better resolution of genetic mechanisms, however. Models of one causal mutation present in both identical-by-descent (IBD) homozygotes and heterozygotes fit genotype frequencies at 37 vQTL; consistent with the mutation-selection balance theory of genetic load, 20 are highly deleterious, completely recessive mutations and 17 are less deleterious, partially dominant mutations. Another 22 vQTL require pairs of recessive or partially dominant causal mutations, half showing selection against recessive mutations linked in repulsion, producing pseudo-overdominance. Only eight vQTL appear to support the overdominance theory of genetic load, with deficiencies of both IBD homozygotes, but at least four of these are likely caused by pseudo-overdominance. Evidence for epistasis is absent. A high mutation rate, random genetic drift, and pseudo-overdominance may explain both the oyster’s extremely high genetic diversity and a high genetic load maintained primarily by mutation-selection balance.


2013 ◽  
Vol 59 (4) ◽  
pp. 458-474 ◽  
Author(s):  
Sen Song ◽  
Shijie Bao ◽  
Ying Wang ◽  
Xinkang Bao ◽  
Bei An ◽  
...  

Abstract Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. Although the effects of recent glacial cycles on genetic diversity have been well studied on species in Europe and North America, genetic legacy of species in the Pleistocene in north and northwest of China where glaciations was not synchronous with the ice sheet development in the Northern Hemisphere or or had little or no ice cover during the glaciations’ period, remains poorly understood. Here we used phylogeographic methods to investigate the genetic structure and population history of the chukar partridge Alec-toris chukar in north and northwest China. A 1,152 – 1,154 bp portion of the mtDNA CR were sequenced for all 279 specimens and a total number of 91 haplotypes were defined by 113 variable sites. High levels of gene flow were found and gene flow estimates were greater than 1 for most population pairs in our study. The AMOVA analysis showed that 81% and 16% of the total genetic variability was found within populations and among populations within groups, respectively. The demographic history of chukar was examined using neutrality tests and mismatch distribution analyses and results indicated Late Pleistocene population expansion. Results revealed that most populations of chukar experienced population expansion during 0.027 ? 0.06 Ma. These results are at odds with the results found in Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023 to 0.018 Ma). Our results are not consistent with the results from avian species of Tibetan Plateau, either, where species experienced population expansion following the retreat of the extensive glaciation period (0.5 to 0.175 Ma).


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184526 ◽  
Author(s):  
Sorravis Lapbenjakul ◽  
Watcharaporn Thapana ◽  
Panupon Twilprawat ◽  
Narongrit Muangmai ◽  
Thiti Kanchanaketu ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Surapon Yodsiri ◽  
Komgrit Wongpakam ◽  
Adisak Ardharn ◽  
Chadaporn Senakun ◽  
Sutthira Khumkratok

The Mekong River and its tributaries possess the second highest diversity in fish species in the world. However, the fish biodiversity in this river is threatened by several human activities, such as hydropower plant construction. Understanding the genetic diversity and genetic structure of the species is important for natural resource management. Belodontichthys truncatus Kottelat & Ng is endemic to the Mekong River basin and is an important food source for people in this area. In this study, the genetic diversity, genetic structure, and demographic history of the twisted-jaw fish, B. truncatus, were investigated using mitochondrial cytochrome b gene sequences. A total of 124 fish specimens were collected from 10 locations in the Mekong and its tributaries. Relatively high genetic diversity was found in populations of B. truncatus compared to other catfish species in the Mekong River. The genetic structure analysis revealed that a population from the Chi River in Thailand was genetically significantly different from other populations, which is possibly due to the effect of genetic drift. Demographic history analysis indicated that B. truncatus has undergone recent demographic expansion dating back to the end of the Pleistocene glaciation.


Sign in / Sign up

Export Citation Format

Share Document