Discovery of Llandovery (Silurian) graptolites and probable Devonian corals in the Southalpine Metamorphic Basement of the Eastern Alps (Agordo, NE Italy)

2005 ◽  
Vol 142 (1) ◽  
pp. 1-5 ◽  
Author(s):  
IGINIO DIENI ◽  
DANILO GIORDANO ◽  
DAVID K. LOYDELL ◽  
FRANCESCO P. SASSI

We report the discovery of Aeronian (Middle Llandovery) graptolites, and corals of probable Devonian age, in boudins hosted by greenschists, within the Southalpine Metamorphic Basement. These discoveries provide key constraints to the depositional age range of the protoliths. This remarkable occurrence of almost undeformed graptolites and compound corals in boudins within a metamorphic shear zone indicates very marked local strain partitioning.

2006 ◽  
Vol 412 (1-2) ◽  
pp. 87-103 ◽  
Author(s):  
Martin Putz ◽  
Kurt Stüwe ◽  
Mark Jessell ◽  
Philippe Calcagno

2020 ◽  
Author(s):  
Lauren Kedar ◽  
Clare Bond ◽  
David Muirhead

<p>Multi-layered stratigraphic sequences present ample opportunity for the study of strain localization and its complexities. By constraining mechanisms of crustal weakening, it is possible to gain a sounder understanding of the dynamic evolution of the Earth’s crust, especially when applied to realistic, field-based scenarios. One such mechanism is that of strain-related carbon ordering. This is the process whereby the amorphous nanostructure of fossilized organic matter contained within the rock is progressively organized towards a more sheet-like structure, similar to that of graphite. One common method of studying this process is through Raman spectroscopy. This is a non-destructive tool which makes use of the relative positions and intensities of two key spectral peaks, where one peak represents graphitic carbon and the other disordered (or amorphous) carbon. The intensity ratio between these two peaks suggests the degree to which the carbon has progressed from its original kerogen-like structure towards that of graphite. This progression can be due to increasing temperature or increasing strain, and until now, these two contributory factors have been difficult to separate, particularly in field examples.</p><p>Previous field-based studies have focused on carbon ordering on fault planes, while experimental studies have monitored the effects of strain-related ordering in organic carbon on both fault surfaces and more distributed shear zones. These studies confirmed the occurrence of strain-related ordering at seismic rates, particularly in the form of graphitization of carbon. However, these experiments showed the effects of strain-related ordering at aseismic rates to be limited when distributed shear zones were considered, in part due to the geological timescales required to emulate true conditions.</p><p>In this study, Raman spectroscopy is used to compare the relative nanostructural order of organic carbon within a recumbent isoclinal fold formed of interbedded limestones and marls. The central, overturned fold limb forms a 170m wide, 1km long aseismic shear zone, with evidence of increased strain recorded in calcite grains relative to the upper and lower limbs. Raman spectroscopy intensity ratios (I[d]/I[g]) are compared across the fold, showing a marked 23% decrease in the overturned limb. Such a decrease in I[d]/I[g] suggests increased carbon ordering within the overturned limb, which in combination with evidence for increased strain in calcite, suggests that the carbon ordering here is derived directly from strain-related ordering. This has important implications. We infer, from previous studies, that strain-related carbon ordering encourages further strain partitioning in carbonaceous material, and may enhance zones of weakness in the rock. This ordering in aseismic shear zones has so far been unreported in nature, and so our field-based results are significant in supporting previous experimental evidence for this phenomenon. Our results also have implications for understanding dynamic crustal evolution, and will play an important role in the development of Raman thermobarometry, especially since current methods do not distinguish between strain-related and temperature-related ordering.</p>


1995 ◽  
Vol 7 (2) ◽  
pp. 191-196 ◽  
Author(s):  
J.L. Smellie ◽  
I.L. Millar

K-Ar whole-rock dating of five samples of quartz-mica schist from the Nordenskjöld Coast, eastern Graham Land, provides the first unequivocal evidence of pre-Triassic (> 249 ± 7 Ma) deposition of a sequence regarded as part of the Trinity Peninsula Group (TPG). A maximum age range of latest Carboniferous (< c. 300 Ma)–Permian for deposition of the Nordenskjöld Coast sequence is indicated, and a polymetamorphic, polydeformational history for the TPG in northern Graham Land. However, the possibility exists that the rocks dated here from the Nordenskjöld Coast are part of a hitherto-unrecognized metamorphic basement unrelated to and older than the mainly Triassic TPG outcrops farther north. The new ages confirm the existence of a previously poorly-defined regional metamorphic event in the Antarctic Peninsula at about 245–250 Ma ago.


Author(s):  
Linus Klug ◽  
Nikolaus Froitzheim

AbstractThe Ötztal Nappe in the Eastern Alps is a thrust sheet of Variscan metamorphic basement rocks and their Mesozoic sediment cover. It has been argued that the main part of the Ötztal Nappe and its southeastern part, the Texel Complex, belong to two different Austroalpine nappe systems and are separated by a major tectonic contact. Different locations have been proposed for this boundary. We use microprobe mapping of garnet and structural field geology to test the hypothesis of such a tectonic separation. The Pre-Mesozoic rocks in the area include several lithotectonic units: Ötztal Complex s.str., Texel Complex, Laas Complex, Schneeberg Complex, and Schneeberg Frame Zone. With the exception of the Schneeberg Complex which contains only single-phased (Eoalpine, i.e. Late Cretaceous) garnet, all these units have two-phased garnet with Variscan cores and Eoalpine rims. The Schneeberg Complex represents Paleozoic sediments with only low-grade (sub-garnet-grade) Variscan metamorphism which was thrust over the other units and their Mesozoic cover (Brenner Mesozoic) during an early stage of the Eoalpine orogeny, before the peak of Eoalpine metamorphism and garnet growth. Folding of the thrust later modified the structural setting so that the Schneeberg Thrust was locally inverted and the Schneeberg Complex came to lie under the Ötztal Complex s.str. The hypothesized Ötztal/Texel boundaries of earlier authors either cut across undisturbed lithological layering or are unsupported by any structural evidence. Our results support the existence of one coherent Ötztal Nappe, including the Texel Complex, and showing a southeastward increase of Eoalpine metamorphism which resulted from southeastward subduction.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nicole Sequeira ◽  
Abhijit Bhattacharya

Abstract Curvilinear steep shear zones originate in different tectonic environments. In the Chottanagpur Gneiss Complex (CGC), the steeply dipping, left-lateral and transpressive Early Neoproterozoic Hundru Falls Shear Zone (HFSZ) with predominantly north-down kinematics comprises two domains, e.g., an arcuate NW-striking (in the west) to W-striking (in the east) domain with gently plunging stretching lineation that curves into a W-striking straight-walled domain with down-dip lineation. The basement-piercing HFSZ truncates a carapace of flat-lying amphibolite facies paraschist and granitoid mylonites, and recumbently folded anatectic gneisses. The carapace—inferred to be a midcrustal regional-scale low-angle detachment zone—structurally overlies an older basement of Early Mesoproterozoic anatectic gneisses intruded by Mid-Mesoproterozoic/Early Neoproterozoic granitoids unaffected by the Early Neoproterozoic extensional tectonics. The mean kinematic vorticity values in the steep HFSZ-hosted granitoids computed using the porphyroclast aspect ratio method are 0.74–0.83 and 0.51–0.65 in domains with shallow and steep lineations, respectively. The granitoid mylonites show a chessboard subgrain microstructure, but lack evidence for suprasolidus deformation. The timing relationship between the two domains is unclear. If the two HFSZ domains were contemporaneous, the domain of steep lineations with greater coaxial strain relative to the curvilinear domain formed due to strain partitioning induced by variations in mineralogy and/or temperature of the cooling granitoid plutons. Alternately, the domain of gently plunging lineations in the HFSZ was a distinct shear zone that curved into a subsequent straight-walled shear zone with steeply plunging lineation due to a northward shift in the convergence direction during deformation contemporaneous with the Early Neoproterozoic accretion of the CGC and the Singhbhum Craton.


Sign in / Sign up

Export Citation Format

Share Document