Detrital zircon U–Pb dating of low-grade metamorphic rocks in the Sulu UHP belt: evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction

2008 ◽  
Vol 165 (1) ◽  
pp. 423-433 ◽  
Author(s):  
JIAN-BO ZHOU ◽  
SIMON A. WILDE ◽  
GUO-CHUN ZHAO ◽  
CHANG-QING ZHENG ◽  
WEI JIN ◽  
...  
Author(s):  
Chen Wu ◽  
Jie Li ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Xuanhua Chen ◽  
...  

The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture.


2013 ◽  
Vol 734-737 ◽  
pp. 60-70
Author(s):  
Yu Shi ◽  
Xi Jun Liu ◽  
Zuo Hai Feng

The Qinling orogenic belt (QOB) located between the North China Craton (NCC) and the South China Craton (SCC) is composed of the Northern Qinling Belt (NQB) and the Southern Qinling Belt (SQB). This study presents new geochemical data, zircon U-Pb ages and Hf isotopes from two rocks from the Qinling complex in the NQB. LA-ICP-MS zircon U-Pb dating results suggest that the Qinling complex was formed in early Neoproterozoic and experienced the early Paleozoic metamorphism. HighεHf(t) values of 9.0-12.0 for the early Paleozoic zircons indicated that there is mantle-derived magma intruding into the Qinling complex in the early Paleozoic.


2021 ◽  
pp. 1-26
Author(s):  
Nigel C. Hughes ◽  
Shanchi Peng ◽  
David A. T. Harper ◽  
Paul M. Myrow ◽  
Ngân Kim Phạm ◽  
...  

Abstract Later Cambrian and earliest Ordovician trilobites and brachiopods spanning eight horizons from five localities within the Sông Mã, Hàm Rồng and Đông Sơn formations of the Thanh Hóa province of Việt Nam, constrain the age and faunal affinities of rocks within the Sông Đà terrane, one of several suture/fault-bounded units situated between South China to the north and Indochina to the south. ‘Ghost-like’ preservation in dolomite coupled with tectonic deformation leaves many of the fossils poorly preserved, and poor exposure precludes collecting within continuously exposed stratigraphic successions. Cambrian carbonate facies pass conformably into Lower Ordovician carbonate-rich strata that also include minor siliciclastic facies, and the recovered fauna spans several uppermost Cambrian and Lower Ordovician biozones. The fauna is of equatorial Gondwanan affinity, and comparable to that from South China, North China, Sibumasu and Australia. A new species of Miaolingian ‘ptychopariid’ trilobite, Kaotaia xuanensis, is described. Detrital zircon samples from Cambrian–Ordovician rocks of the North Việt Nam and Sông Đà terranes, and from Palaeozoic samples from the Trường Sơn sector of Indochina immediately to the south, contain a predominance of ages spanning the Neoproterozoic period and have a typical equatorial Gondwanan signature. We associate the Cambrian and Tremadocian of the Sông Đà terrane with areas immediately to the north of it, including the North Việt Nam terrane and the southern parts of Yunnan and Guangxi provinces of China.


2018 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC), and to reconstruct the early Mesozoic tectono-paleogeography of the region, we combine LA–ICP–MS detrital zircon U–Pb dating, Hf isotopic data. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation comprise ~ 58 % Neoarchean to Paleoproterozoic and ~ 42 % Phanerozoic grains that were sourced from areas to the south and north of the basins within the NCC. This indicates that Early Triassic deposition was controlled primarily by southward subduction of the Paleo-Asian oceanic plate beneath the NCC, and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining ~ 12 % from the Xing'an–Mongol Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast, ~ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining ~ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2016 ◽  
Vol 448 (1) ◽  
pp. 145-159 ◽  
Author(s):  
Tianchen He ◽  
Ying Zhou ◽  
Pieter Vermeesch ◽  
Martin Rittner ◽  
Lanyun Miao ◽  
...  

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2013 ◽  
Vol 150 (4) ◽  
pp. 756-764 ◽  
Author(s):  
LING-LING XIAO ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
ZONG-SHENG JIANG ◽  
CHUN-RONG DIWU ◽  
...  

AbstractAmphibolites and metapelites exposed in the Zanhuang metamorphic complex situated in the south-middle section of the Trans-North China Orogen (TNCO) underwent upper-amphibolite-facies metamorphism and record clockwise P–T paths including retrograde isothermal decompression. High-resolution zircon U–Pb geochronological analyses indicate that the metamorphic peak occurred during ~ 1840–1860 Ma, which is in accordance with the ubiquitous metamorphic ages of ~ 1850 Ma retrieved by miscellaneous geochronologic methods throughout the metamorphic terranes of the northern TNCO, confirming that the south-middle section of the TNCO was involved in the amalgamation of the Eastern and Western Blocks of the North China Craton during the Palaeoproterozoic.


Sign in / Sign up

Export Citation Format

Share Document