scholarly journals Subnormality and generalized commutation relations of families of operators

1990 ◽  
Vol 32 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Jerzy Bartłomiej Stochel

1. Every family of subnormal operators in a Hilbert space fulfils the Halmos-Bram condition on a suitable dense subset of its domain [2], [3]. In [2] and [4] it is shown that the generalized commutation relation implies the Halmos-Bram condition for one operator. In this paper it is proved that the generalized commutation relation implies the Halmos-Bram condition for infinite families of operators (in a special case Jorgensen proved it in a different way for finite families of operators, see [2]) and as an example of the application of this property it is shown that every family of generalized creation operators in the Bargmann space of an infinite order, indexed by mutually orthogonal vectors from I2 is subnormal. See [1] for the definitions.

1970 ◽  
Vol 25 (5) ◽  
pp. 575-586
Author(s):  
H. Stumpf

Functional quantum theory of free Fermi fields is treated for the special case of a free Dirac field. All other cases run on the same pattern. Starting with the Schwinger functionals of the free Dirac field, functional equations and corresponding many particle functionals can be derived. To establish a functional quantum theory, a physical interpretation of the functionals is required. It is provided by a mapping of the physical Hilbert space into an appropriate functional Hilbert space, which is introduced here. Mathematical details, especially the problems connected with anticommuting functional sources are treated in the appendices.


2014 ◽  
Vol 29 (20) ◽  
pp. 1450106 ◽  
Author(s):  
Mir Faizal

In this paper, we will analyze the consequences of deforming the canonical commutation relations consistent with the existence of a minimum length and a maximum momentum. We first generalize the deformation of first quantized canonical commutation relation to second quantized canonical commutation relation. Thus, we arrive at a modified version of second quantization. A modified Wheeler–DeWitt equation will be constructed by using this deformed second quantized canonical commutation relation. Finally, we demonstrate that in this modified theory the big bang singularity gets naturally avoided.


2005 ◽  
Vol 97 (1) ◽  
pp. 73 ◽  
Author(s):  
Kengo Matsumoto

A $\lambda$-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with a $\lambda$-graph system $\mathfrak{L}$ by using groupoid method as a generalization of the Cuntz-Krieger algebras. In this paper, we concretely construct the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ by using both creation operators and projections on a sub Fock Hilbert space associated with $\mathfrak{L}$. We also introduce a new irreducible condition on $\mathfrak{L}$ under which the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite.


1984 ◽  
Vol 25 (1) ◽  
pp. 99-101 ◽  
Author(s):  
Alan Lambert

In this note a characterization of subnormality of operators on Hilbert space is given. The characterization is in terms of a sequence of polynomials in the operator and its adjoint reminiscent of the binomial expansion in commutative algebras. As such no external Hilbert spaces are needed, nor is it necessary to introduce forms dependent on arbitrary sequences of vectors from the Hilbert space.


2018 ◽  
Vol 96 (9) ◽  
pp. 1059-1062 ◽  
Author(s):  
Hassan Hassanabadi ◽  
Hadi Sobhani

This work discusses the observation of splitting in the energy levels of prolate nuclei. Similar effects in atomic physics are known as the Zeeman effect, but in nuclear physics the feasibility of such phenomena has not been observed. After introducing a deformation in the commutation relation in three dimensions, we used these commutation relations in X(3) model. After enough derivation, we then evaluate the energy spectrum relation for the considered system, which has resulted in energy splitting. With these observations in the energy splitting we referred to such an effect as the ultra-fine structures in energy levels. At the end some plots have been depicted to illustrate the results.


2019 ◽  
Vol 10 (4) ◽  
pp. 377-394
Author(s):  
Anirudha Poria ◽  
Jitendriya Swain

AbstractLet {\mathbb{H}} be a separable Hilbert space. In this paper, we establish a generalization of Walnut’s representation and Janssen’s representation of the {\mathbb{H}}-valued Gabor frame operator on {\mathbb{H}}-valued weighted amalgam spaces {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}. Also, we show that the frame operator is invertible on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, if the window function is in the Wiener amalgam space {W_{\mathbb{H}}(L^{\infty},L^{1}_{w})}. Further, we obtain the Walnut representation and invertibility of the frame operator corresponding to Gabor superframes and multi-window Gabor frames on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, as a special case by choosing the appropriate Hilbert space {\mathbb{H}}.


1989 ◽  
Vol 32 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Domingo A. Herrero

AbstractA bounded linear operator A on a complex, separable, infinite dimensional Hilbert space is called finite if for each . It is shown that the class of all finite operators is a closed nowhere dense subset of


1969 ◽  
Vol 21 ◽  
pp. 1178-1181 ◽  
Author(s):  
Chandler Davis ◽  
Heydar Radjavi ◽  
Peter Rosenthal

If is a collection of operators on the complex Hilbert space , then the lattice of all subspaces of which are invariant under every operator in is denoted by Lat . An algebra of operators on is defined (3; 4) to be reflexive if for every operator B on the inclusion Lat ⊆ Lat B implies .Arveson (1) has proved the following theorem. (The abbreviation “m.a.s.a.” stands for “maximal abelian self-adjoint algebra”.)ARVESON's THEOREM. Ifis a weakly closed algebra which contains an m.a.s.a.y and if Lat, then is the algebra of all operators on .A generalization of Arveson's Theorem was given in (3). Another generalization is Theorem 2 below, an equivalent form of which is Corollary 3. This theorem was motivated by the following very elementary proof of a special case of Arveson's Theorem.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Abdelkader Intissar

This paper is devoted to the study of the chaotic properties of some specific backward shift unbounded operatorsHp=A*pAP+1;p=0,1,…realized as differential operators in Bargmann space, whereAandA*are the standard Bose annihilation and creation operators such that[A,A*]=I.


Sign in / Sign up

Export Citation Format

Share Document