Fatty acid composition of depot fats from gnotobiotic lambs

1977 ◽  
Vol 88 (1) ◽  
pp. 175-179 ◽  
Author(s):  
W. M. F. Leat ◽  
P. Kemp ◽  
R. J. Lysons ◽  
T. J. L. Alexander

SUMMARYThe fatty acid composition of the depot fats of lambs reared for 4–5 months under gnotobiotio conditions have been determined and an estimate made of the endogenous synthesis of stearic acid.In an uninoculated gnotobiotic lamb no hydrogenation of dietary lipids occurred in the rumen and this was reflected in the virtual absence oftransacids in depot lipids. In this animal the stearic acid content of perirenal depot fat accounted for 16% of the total fatty acids which was similar to the value found in newborn lambs (17%). Inoculation of the rumen of two gnotobiotic lambs with seven species of bacteria resulted in the establishment of partial hydrogenation processes in the rumen. Varioustransisomers of octadecenoic acids were produced in these lambs from the dietary fatty acids but no stearic acid was formed.These findings are compared with the fatty acid composition of depot fats of other herbivorous and omnivorous animals.

1969 ◽  
Vol 23 (2) ◽  
pp. 421-427 ◽  
Author(s):  
G. A. Garton ◽  
W. R. H. Duncan

1. Samples of subcutaneous (inguinal) and perinephric adipose tissue were obtained, at slaughter, from each of twenty male calves. Three were neonatal animals, three were 3 days old and two were fed on reconstituted milk to appetite until they weighed 100 kg. The other twelve calves were given milk until they reached 50 kg live weight; concentrates were then included in the diet until, at 60 kg live weight, six calves were slaughtered. The remaining six calves were raised to 100 kg on concentrates alone. The weight of the empty reticulo-rumen of each slaughtered calf was recorded.2. The component fatty acids of the adipose tissue triglycerides of the neonatal and 3-day-old calves were very similar; about 80% consisted of oleic acid (18:1) and palmitic acid (16:0) and the remainder comprised stearic acid (18:0), palmitoleic acid (16:1) and myristic acid (14:0), together with very small amounts of other acids which, in the glycerides of the 3-day-old calves, included some evidently of colostral origin. The perinephric glycerides of both these groups of calves were somewhat more unsaturated than were those of subcutaneous adipose tissue.3. The continued consumption of milk by the calves slaughtered at 60 kg live weight was reflected in the presence of enhanced proportions of 14:0, 18:2, 17:0 and 17:1 in the depot triglycerides and, in addition, very small amounts of branched-chain acids and trans 18:1 were detected. A similar fatty acid pattern was observed in the triglycerides of the calves which were given milk only until they were 100 kg live weight. In all these calves only limited growth of the rumen took place.4. By contrast, the calves which were raised on solid feed from 60 kg to 100 kg and in which rumen development had taken place had depot triglycerides whose fatty acid composition resembled that found in adult animals. Increased proportions of stearic acid accompanied by relatively large amounts of trans 18:1 were present, evidently as a result of the assimilation of the products of bacterial modification of dietary fatty acids in the rumen.5. Regardless of the age of the calves and the over-all fatty acid composition of their tissue triglycerides, the intramolecular disposition of the fatty acids was similar in that saturated components were present esterified mainly in positions 1 and 3, and unsaturated acids for the most part in position 2; the only major exception to this distribution pattern was in respect of trans 18:1 which, when present, was preferentially esterified to the primary alcoholic groups of the glycerol moiety as if it were a saturated acid.


1963 ◽  
Vol 205 (6) ◽  
pp. 1151-1153 ◽  
Author(s):  
E. S. Erwin ◽  
W. Sterner

Calves were fed from 5 to 85 days of age a synthetic milk that contained either 10% corn oil (ca. 50% linoleic acid) or 10% methyl myristate. The fatty acid composition of almost all tissues studied was altered to some extent by the change in dietary fatty acids. In the central nervous system, the medulla and spinal cord were resistant, but the peripheral nervous system (sympathetic trunk, brachial plexus, and vagus nerve) profoundly reflected alteration in dietary fatty acids. In peripheral nervous tissue from calves fed corn oil the proportion of linoleic acid increased from 2 to 5% to 25 to 30%. Similarly, in such tissues, myristic acid increased from 2 to 6% to 16 to 43% in methyl myristate-fed calves. Even the fatty acid composition of endocrine glands (pituitary, adrenal, and testis) reflected dietary fatty acids. The fatty acid composition of the skeletal muscle, adipose tissue, and aorta changed with different dietary fats. The greatest change occurred in the cardiac muscle and liver, in which the proportion of linoleic acid increased in the corn oil-fed calves to 50% of the total fatty acids.


1977 ◽  
Vol 89 (3) ◽  
pp. 575-582 ◽  
Author(s):  
W. M. F. Leat

SummaryAberdeen Angus and Friesian cattle were reared from 4 months of age to slaughter weight at 18–24 months on either high-barley or high-hay diets. Samples of subcutaneous fat were taken by biopsy at 3 monthly intervals, and the degree of fatness of each animal was estimated ultrasonically prior to slaughter, and by visual inspection of the carcasses.The barley-fed animals gained weight more rapidly, and fattened more quickly than the hay-fed animals with the Angus being fatter than the Friesian at the same age. The percentage stearic acid (C18:0) in subcutaneous fat decreased with age and was replaced by octadecenoic acid (C18:l) and hexadecenoic acid (C16:l), these changes being more rapid in barley-fed than in hay-fed animals. At the same degree of fatness the depot fats of the Friesians were more unsaturated than those of the Angus, and in both breeds the fatter the animal the more unsaturated was its depot fat.In the hay-fed cattle the percentage C16:0 in subcutaneous fat increased during the last half of the experiment and at slaughter the percentage C16:0 was significantly higher, and C18:l significantly lower, in all depot fats compared with those of the barley-fed animals.It is concluded that the fatty acid composition of bovine depot fats is modulated by the degree of fattening, and can be affected by diet.


1973 ◽  
Vol 30 (2) ◽  
pp. 181-185 ◽  
Author(s):  
John W. Farrington ◽  
James G. Quinn ◽  
Wayne R. Davis

Samples of the infaunal invertebrates Nephtys incisa and Yoldia limatula from Narragansett Bay, Rhode Island, have been analyzed for their fatty acid distribution. Based on total fatty acids, Yoldia contains 9–16% of an acid tentatively identified as 22:2. The ratios of 18:1/18:0 and 18:1/20:1 fatty acids of Nephtys from a polluted station in the bay are lower than the corresponding ratios for animals from relatively clean areas.


2014 ◽  
Vol 116 (5) ◽  
pp. 584-595 ◽  
Author(s):  
Deiene Rodríguez-Barreto ◽  
Salvador Jerez ◽  
Juana R. Cejas ◽  
M. Virginia Martin ◽  
Nieves G. Acosta ◽  
...  

2002 ◽  
Vol 2002 ◽  
pp. 206-206 ◽  
Author(s):  
Z.C.T.R. Daniel ◽  
R.J. Wynn ◽  
A.M. Salter ◽  
P.J. Buttery

Compared to meat from other animals lamb contains high levels of saturated fat, particularly stearic acid which comprises 18% of the total fatty acids (Enser et al, 1996). This stearic acid can be desaturated in the tissue by stearoyl coenzyme A desaturase (SCD) to produce oleic acid. In sheep SCD is produced from a single gene and the levels of SCD mRNA in the tissue correlate well with oleic acid (Ward et al, 1998, Barber et al, 2000) suggesting that an upregulation of SCD activity may increase the relative proportions of unsaturated and saturated fatty acids and so significantly improve the nutritional quality of sheep meat. Our recent studies have shown that insulin increases SCD mRNA levels and monounsaturated fatty acid synthesis in cultured ovine adipose tissue explants (Daniel et al, 2001). The present study was designed to investigate whether feeding a diet believed to manipulate SCD mRNA concentrations would significantly alter the fatty acid composition of lamb.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2064 ◽  
Author(s):  
Candice Quin ◽  
Deanna L. Gibson

Human milk is the best nutritional choice for infants. However, in instances where breastfeeding is not possible, infant formulas are used as alternatives. While formula manufacturers attempt to mimic the performance of human breast milk, formula-fed babies consistently have higher incidences of infection from diarrheal diseases than those breastfed. Differences in disease susceptibility, progression and severity can be attributed, in part, to nutritional fatty acid differences between breast milk and formula. Despite advances in our understanding of breast milk properties, formulas still present major differences in their fatty acid composition when compared to human breast milk. In this review, we highlight the role of distinct types of dietary fatty acids in modulating host inflammation, both directly and through the microbiome-immune nexus. We present evidence that dietary fatty acids influence enteric disease susceptibility and therefore, altering the fatty acid composition in formula may be a potential strategy to improve infectious outcomes in formula-fed infants.


Sign in / Sign up

Export Citation Format

Share Document