The growth and development of cowpeas (Vigna unguiculata) under tropical field conditions: 1. Leaf area

1979 ◽  
Vol 93 (2) ◽  
pp. 291-307 ◽  
Author(s):  
E. J. Littleton ◽  
M. D. Dennett ◽  
J. Elston ◽  
J. L. Monteith

SUMMARYThe pattern of leaf growth and death was followed in stands of cowpea grown in the field at Ibadan, Nigeria. Temperature affected this pattern. Leaf area index increased quicker and leaf death started sooner during warm seasons. Individual leaves died while pods at the same node were filling. The rate of leaf appearance increased with temperature and the duration of expansion of individual leaves decreased so that a constant number of leaves were expanding at one time. The mean rate of expansion of individual leaves increased with temperature proportionately more than the duration decreased, hence final leaf size increased with temperature. Base temperatures for leaf appearance and leaf expansion were 16 and 20 °C respectively.

1995 ◽  
Vol 43 (2) ◽  
pp. 247-260
Author(s):  
H. Biemond

In a series of greenhouse and field trials, spinach cv. Trias plants were supplied with different amounts of N fertilizer in various split applications. Rates of leaf emergence and expansion were recorded, as well as final leaf size. The rate of leaf appearance varied between 0.16 and 0.57/day across experiments, but was hardly affected by N treatment. The rate of leaf expansion and mature leaf area increased with leaf number, reaching maximum values at leaf pair 3+4 or 5+6 and decreasing subsequently. Both characteristics were positively correlated with N supply. The duration of expansion was not influenced by N treatments and varied between 15 and 30 days in most experiments. The rate of leaf expansion was the main factor determining mature leaf size. Specific leaf area over all green leaves slowly decreased with time in most experiments and was around 300 cmsuperscript 2/g. As the differences in the number of leaves were small, the differences in total green leaf area per plant resulted from differences in the areas of individual mature leaves.


1958 ◽  
Vol 51 (3) ◽  
pp. 347-352 ◽  
Author(s):  
R. H. M. Langer

1. Swards of S. 48 timothy and S. 215 meadow fescue growing alone or together were sampled at intervals of 3 weeks throughout the season. The number and weight of leaves, stems and ears were determined, and leaf area was estimated.2. Despite high rainfall, the total number of tillers in both species declined from the beginning of the experiment until early July, but increased again from then onwards until the original complement had been approximately restored. The number of leaves failed to show a corresponding increase in the autumn because each tiller carried fewer leaves than earlier in the year.3. In the spring total dry weight increased more rapidly in meadow fescue than in timothy which in turn out-yielded meadow fescue later in the season. Both species attained their greatest dry weight soon after ear emergence, a period which was marked by considerable crop growth and relative growth rates.4. Leaf area index reached a maximum before total dry weight had increased to its highest level, but then declined in both species. Meadow fescue differed from timothy by producing a second crop of foliage after the summer with a leaf area index of about 7. This second rise appeared to be due mainly to increased leaf size in contrast to timothy whose leaves became progressively smaller towards the end of the season.5. The differences in growth between the species discussed with reference to their dates of ear emergence which in this experiment differed by about 6 weeks.


1981 ◽  
Vol 96 (3) ◽  
pp. 503-508 ◽  
Author(s):  
W. Erskine

SUMMARYThe variability generated in a diallel cross between seven genotypes for vegetative and phenological characters was studied in the F1 and F2 generations in lowland Papua New Guinea. The mean narrow-sense heritability values of mean leaf size and leaf area index at flowering were 88·0 and 78·5%. The parental values of these characters gave good predictability of the performance of the parents in hybrid combination. For mean number of leaves per plant at flowering, environmental effects were of major importance, and consequently selection between crosses for number of leaves is considered futile. There was a large genotype ˣ environment interaction for time to first flower. The role of various environmental factors in causing the interaction for flowering is discussed.


1967 ◽  
Vol 9 (2) ◽  
pp. 247-257 ◽  
Author(s):  
K. J. R. Edwards

Detailed measurements of leaf growth and leaf dimensions in the seedling stage were made on lines which had been selected either for large or small leaf size or for fast or slow rates of leaf appearance within one population of Lolium multiflorum (Italian ryegrass) and two populations of L. perenne (Irish perennial and Hunsballe perennial ryegrass).Selection for either character had no effect on the rate of initiation of primordia at the apex, but did change the rate at which successive primordia became leaves. This rate of unfolding was very highly correlated with the rate of visible appearance of leaves and in all cases showed a parallel response to selection for the latter, as did also the rate of maturation of leaves. All three rates showed a negative correlated response to selection for leaf size.Selection for increased leaf size in all cases led to a longer duration of the elongation of an individual leaf, but selection for faster rate of leaf appearance always reduced this duration. The rate of elongation of individual leaves increased under selection for larger leaf size but showed irregular changes under selection for faster leaf appearance, going down in Irish but up in Hunsballe.Data for dimensions of cells from the lower epidermis showed that changes in leaf length under selection were sometimes associated with changes in cell length, some-times in cell number and sometimes with both.Selection had in no case disrupted the close association between the maturation and cessation of growth of a leaf on the one hand, and, on the other, the unfolding from the apex and onset of rapid growth of the next younger leaf on the same side of the apex. Thus in all lines only two leaves (one on each side of the apex) were elongating rapidly at any one time, and an increase in the rate of unfolding was associated with a decrease in the duration of elongation and vice versa.This association was the basis of the observed negative correlated responses between leaf size and rate of leaf appearance. But the fact that the rate of elongation could change independently of the duration opened up the possibility of setting up a selection criterion which would increase the total rate of leaf area formation.The value of this kind of analysis of a character complex in a plant-breeding programme is suggested to lie in discovering physiologically or developmentally limiting processes rather than merely identifying morphological components.


1970 ◽  
Vol 16 (1) ◽  
pp. 17-28 ◽  
Author(s):  
K. J. R. Edwards

SUMMARYUsing four lines derived from a single base population of Lolium perenne by selection for large leaf size (LL), small leaf size (SL), fast rate of leaf appearance (FR), and slow rate of leaf appearance (SR), the inheritance of a number of related characters specifying various aspects of leaf development was studied. F1 and F2 generations were produced for all possible crosses between these four lines.The genetic differences between the selection lines were largely additive for all characters studied and entirely so for rate of leaf appearance, duration of elongation of a single leaf and for the time interval between the maturation of leaf 3 and the unfolding of the next youngest leaf on the same side of the apex, leaf 5. The non-additive variances noted in rate of total leaf area formation, individual leaf size and its components length and width, and in the rate of leaf elongation, were associated with a tendency towards heterosis in these characters. This was quite marked in some crosses and tended to be larger for the more complex characters, rate of total leaf area formation and leaf size, suggesting that the heterosis was, to a considerable extent, due to interactions between genes controlling component characters.The data confirmed the earlier finding that the negative correlated selection response between leaf size and rate of leaf appearance was due to a basic association between the maturation of a leaf and the unfolding (onset of rapid elongation) of the next youngest leaf on the same side of the apex. Thus an increase in rate of leaf appearance reduces the duration of elongation of a leaf and this in turn will reduce leaf length. However, the basic association, which seems to be controlled by vascular development of the young leaf, is not entirely invariate.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Sergio Castro-Nava ◽  
Alfredo J. Huerta ◽  
José Manuel Plácido-de la Cruz ◽  
Epifanio Mireles-Rodríguez

The aim of this study was to compare sugarcane (Saccharumspp.) canopy developmental components of three commercial varieties (CP 72-2086, Mex 79-431, and Mex 68-P-23) in a subtropical environment under rainfed and high temperature conditions, a poorly described topic in the literature. A field experiment was carried out in southern Tamaulipas, Mexico, throughout November 2011–January 2013 crop cycle, during which 111 of the days had daily maximum temperatures at or above 35°C. Number of leaves, leaf area, leaf appearance rate, and leaf area index (LAI) were determined. Thermal time exposure, °Cd (°C day−1), was determined based on total number of green ligulate leaves using 10°C as the base temperature. At 5000°Cd the number of leaves per plant ranged from 32 to 40 and the dependence of leaf emergence rate as a function of temperature was confirmed. The leaf emergence rate of CP 72-2086 was significantly greater than that of the other two varieties. Cultivars did not differ with respect to leaf length but differed for all other parameters measured. These results show the potential importance of considering sugarcane varietal differences in leaf phenology and canopy development for breeding programs focusing on rainfed and high temperature conditions.


1981 ◽  
Vol 96 (2) ◽  
pp. 327-336 ◽  
Author(s):  
S. M. Farah

SUMMARYField beans (Vicia faba L.) were given three irrigation treatments in the field during two seasons to examine reduction in leaf area by water shortage, through effects on number of cells, cell volume and cell arrangement.The two crops behaved differently in the two seasons, presumably because of differences in environmental conditions. Season 1976 was brighter, warmer and drier than 1977. Water shortage reduced leaf area, dry matter and economic yield. The rate of leaf appearance and leaf longevity were also decreased by water shortage. The greatest biological and economic yields were produced by the wet treatment, followed by the medium and dry treatments. The treatment open to natural rainfall yielded least in 1976, but the second most in 1977. The yields of 1976 were considerably less than those of 1977.


2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


1999 ◽  
Vol 124 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Claudio M. Dunan ◽  
Philip Westra ◽  
Frank D. Moore

A simulation model was built as a decision aid for management of five weed species in direct seeded irrigated onion (Allium cepa L.). The model uses the state variable approach and simulations are driven by temperature and sunlight as photosynthetically active radiation (PAR). It predicts yield reduction caused by competition for PAR according to the ratio of crop leaf area index (LAI) to weed LAI and respective light extinction coefficients (k). Input variables are plant density by species and average number of leaves by species. Number of leaves per plant is used by the model to provide an estimate of initial leaf area per plant. The model calculates initial species LAIs by multiplying species density times average leaf area per plant. The model accurately describes competitive interactions, taking into account respective plant densities, time of emergence, and time of weed removal. It permits economic evaluation of management factors such as handweeding, chemical weed control, herbicide phytotoxicity due to early application, and control of weed flushes during the season. The model is also used to evaluate mechanisms of plant competition for sunlight. In a sensitivity analysis, onion yield loss was more sensitive to weed PAR interception than to PAR use efficiency, the latter a species-dependent constant in the model.


2021 ◽  
Vol 25 (8) ◽  
pp. 1513-1518
Author(s):  
A.S. Gunu ◽  
M. Musa

Field trial was carried out during the 2019 rainy season (June to October) at the Dryland Teaching and Research Farm of the Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto to determine the growth and yield of sorghum varieties in the study area. The treatments consisted of five (5) sorghum varieties (Samsorg 45, Samsorg 46, Janjari, Yartawa and Jardawa), the treatments were laid out in a Randomized Complete Block Design (RCBD) replicated three (3) times. Data were collected on the growth and yield of the crop. Janjari and Jardawa varieties were higher in plant height. Jardawa and Yartawa varieties were higher in number of leaves. Janjari and Yartawa varieties were higher in total dry weight. Janjari, Jardawa and Yartawa varieties were higher in harvest index. Yartawa variety was higher in leaf area, leaf area index and 1000-grain weight. Jardawa variety was higher in panicle length. Janjari variety was early in number of days to heading, flowering, and maturity and was higher in dry stalk weight. The grain yield (249 – 1506kg ha-1 ) was higher in Janjari and Yartawa varieties (1268 – 1506 kg ha-1). Based on the findings of this research, it could be concluded that Janjari and Yartawa varieties performed better than other varieties in the study area.


Sign in / Sign up

Export Citation Format

Share Document