Water uptake by soya-bean roots as affected by their depth and by soil water content

1978 ◽  
Vol 90 (1) ◽  
pp. 205-213 ◽  
Author(s):  
S. T. Willatt ◽  
H. M. Taylor

SUMMARYA field experiment was made to determine water uptake patterns of soya beans and water use and to compare relative effectiveness of roots at various depths in the profile.Depth of water extraction by the root systems increased with rooting depth. Water uptake rates decreased with soil water content at all soil depths and the soil water content at which roots extracted almost no water increased with depth. The maximum rate of uptake of the deep roots was greater, per unit of length, than shallow roots.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 228
Author(s):  
M. A. Hamza ◽  
S. H. Anderson ◽  
L. A. G. Aylmore

Although measurements of water drawdown by single radish root systems have been previously published by the authors, further research is needed to evaluate water drawdown patterns in multiple-root systems. The objective of this study was to compare water transpiration patterns estimated using X-ray computed tomography (CT) with the traditional gravimetric method and to evaluate the effects of variably spaced multiple root systems on soil water content and corresponding water content gradients. Water drawdown showed a dual pattern in which it increased rapidly when soil water content was high at the beginning of transpiration, then slowed down to an almost constant level with time as water content decreased. These results contrast with the single-root system wherein transpiration rates initially increased rapidly and then slowly increased with time. Water uptake estimated using the CT method was observed to be 27–38% lower than the gravimetrically estimated water uptake; this difference was attributed to lower water uptake for the upper 30 mm layer (CT measured) than lower layers due to differences in root density. However, good correlation (r = 0.97) was found between both measurement methods. The drawdown patterns for multiple root systems showed a convex shape from the root surface to the bulk soil, compared with a nearly linear shape for single roots. The water content drawdown areas and the drawdown distances for multiple root systems were found to be much larger than those corresponding to single radish roots. Differential water content gradients were observed for roots spaced at 15-mm distances compared with 3–4-mm distances. These differential gradients from the bulk soil towards the root-zone occurred probably creating localised water potential gradients within the root-zone, which moved water from between roots to root surfaces. The lowest water content values were located in the inter-root areas. The CT-scanned layer probably acted as one drawdown area with particularly higher water drawdown from the inter-root areas.


2003 ◽  
Vol 39 (11) ◽  
Author(s):  
F. Hupet ◽  
S. Lambot ◽  
R. A. Feddes ◽  
J. C. van Dam ◽  
M. Vanclooster

2021 ◽  
Author(s):  
Lena Wohlgemuth ◽  
Pasi Rautio ◽  
Bernd Ahrends ◽  
Alexander Russ ◽  
Lars Vesterdal ◽  
...  

Abstract. Despite the importance of vegetation uptake of atmospheric gaseous elemental mercury (Hg(0)) within the global Hg cycle, little knowledge exists on the physiological, climatic and geographic factors controlling stomatal uptake of atmospheric Hg(0) by tree foliage. We investigate controls on foliar stomatal Hg(0) uptake by combining Hg measurements of 3,569 foliage samples across Europe with data on tree species traits and environmental conditions. To account for foliar Hg accumulation over time, we normalized foliar Hg concentration over the foliar life period from the simulated start of the growing season to sample harvest. The most relevant parameter impacting daily foliar stomatal Hg uptake was tree functional group (deciduous versus coniferous trees). On average, we measured 3.2 times higher daily foliar stomatal Hg uptake rates in deciduous leaves than in coniferous needles of the same age. Across tree species, for foliage of beech and fir, and at two out of three forest plots with more than 20 samples, we found a significant (p < 0.001) increase in foliar Hg values with respective leaf nitrogen concentrations. We therefore suggest, that foliar stomatal Hg uptake is controlled by tree functional traits with uptake rates increasing from low to high nutrient content representing low to high physiological activity. For pine and spruce needles, we detected a significant linear decrease of daily foliar stomatal Hg uptake with the proportion of time, during which vapor pressure deficit (VPD) exceeded the species-specific threshold values of 1.2 kPa and 3 kPa, respectively. The proportion of time within the growing season, during which surface soil water content (ERA5-Land) in the region of forest plots was low correlated negatively with corresponding foliar Hg uptake rates of beech and pine. These findings suggest that stomatal uptake of atmospheric Hg(0) is inhibited under high VPD conditions and/or low soil water content due the regulation of stomatal conductance to reduce water loss under dry conditions. We therefore propose, that foliar Hg measurements bear the potential to serve as proxy for stomatal conductance. Other parameters associated with forest sampling sites (latitude and altitude), sampled trees (average age and diameter at breast height) or regional satellite observation-based transpiration product (GLEAM) did not significantly correlate with daily foliar Hg uptake rates. We conclude that tree physiological activity and stomatal response to VPD and soil water content should be implemented in a stomatal Hg model, to assess future Hg cycling under different anthropogenic emission scenarios and global warming.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553f-554
Author(s):  
A.K. Alva ◽  
A. Fares

Supplemental irrigation is often necessary for high economic returns for most cropping conditions even in humid areas. As irrigation costs continue to increase more efforts should be exerted to minimize these costs. Real time estimation and/or measurement of available soil water content in the crop root zone is one of the several methods used to help growers in making the right decision regarding timing and quantity of irrigation. The gravimetric method of soil water content determination is laborious and doesn't suite for frequent sampling from the same location because it requires destructive soil sampling. Tensiometers, which measure soil water potential that can be converted into soil water content using soil moisture release curves, have been used for irrigation scheduling. However, in extreme sandy soils the working interval of tensiometer is reduced, hence it may be difficult to detect small changes in soil moisture content. Capacitance probes which operate on the principle of apparent dielectric constant of the soil-water-air mixture are extremely sensitive to small changes in the soil water content at short time intervals. These probes can be placed at various depths within and below the effective rooting depth for a real time monitoring of the water content. Based on this continuous monitoring of the soil water content, irrigation is scheduled to replenish the water deficit within the rooting depth while leaching below the root zone is minimized. These are important management practices aimed to increase irrigation efficiency, and nutrient uptake efficiency for optimal crop production, while minimizing the impact of agricultural non-point source pollutants on the groundwater quality.


2002 ◽  
Vol 38 (12) ◽  
pp. 36-1-36-14 ◽  
Author(s):  
F. Hupet ◽  
S. Lambot ◽  
M. Javaux ◽  
M. Vanclooster

2015 ◽  
Vol 19 (1) ◽  
pp. 409-425 ◽  
Author(s):  
M. Guderle ◽  
A. Hildebrandt

Abstract. Understanding the role of plants in soil water relations, and thus ecosystem functioning, requires information about root water uptake. We evaluated four different complex water balance methods to estimate sink term patterns and evapotranspiration directly from soil moisture measurements. We tested four methods. The first two take the difference between two measurement intervals as evapotranspiration, thus neglecting vertical flow. The third uses regression on the soil water content time series and differences between day and night to account for vertical flow. The fourth accounts for vertical flow using a numerical model and iteratively solves for the sink term. None of these methods requires any a priori information of root distribution parameters or evapotranspiration, which is an advantage compared to common root water uptake models. To test the methods, a synthetic experiment with numerical simulations for a grassland ecosystem was conducted. Additionally, the time series were perturbed to simulate common sensor errors, like those due to measurement precision and inaccurate sensor calibration. We tested each method for a range of measurement frequencies and applied performance criteria to evaluate the suitability of each method. In general, we show that methods accounting for vertical flow predict evapotranspiration and the sink term distribution more accurately than the simpler approaches. Under consideration of possible measurement uncertainties, the method based on regression and differentiating between day and night cycles leads to the best and most robust estimation of sink term patterns. It is thus an alternative to more complex inverse numerical methods. This study demonstrates that highly resolved (temporally and spatially) soil water content measurements may be used to estimate the sink term profiles when the appropriate approach is used.


2006 ◽  
Vol 57 (3) ◽  
pp. 297 ◽  
Author(s):  
I. R. P. Fillery ◽  
R. E. Poulter

The effect of including phases of long-growing-season annuals and herbaceous perennial pastures on water use was examined at 2 sites (deep sand and duplex soil) in Western Australia. Herbaceous perennials used were lucerne (Medicago sativa), and a mix of C3 grasses comprising phalaris (Phalaris aquatica), tall wheat grass (Thinopryum ponticum), and tall fescue (Festuca arundinacea) (perennial grass treatment). The long-season annual treatment was a mix of yellow and pink serradella (Ornithopus sp.) and Casbah biserrula (Biserrula pelecinus). These treatments were compared with annual-based pasture that was a mixture of subterranean clover with capeweed and Brassica species, and annual crops. Pasture treatments were first sown in 1998. High senescence of C3 grasses over the 1998–99 summer and poor germination of serradella/Casbah biserrula in the autumn of 1999 necessitated the re-seeding of the long-season annual and the perennial grass treatment in 1999. Wheat was sown in 1998, lupin in 1999, and barley in 2000 in an annual crop treatment. Soil water content to 1.5 m was measured hourly using frequency domain reflectometer probes, and a neutron probe was used monthly to measure changes in soil water to 5 m. Herbage production and species composition were determined. In each year of the study, annual pasture species senesced by November. About 20 lucerne plants/m2 persisted through the first summer–autumn in deep loamy sand and 40 lucerne plants/m2 in a duplex soil. Perennial C3 grass species did not survive the summer–autumn in sufficient density and distribution to evaluate their effect on soil water. Annual dry matter (DM) production in lucerne-based and subterranean clover-based pasture was not significantly different. Dry matter production in lucerne between 1 December and the following May–June, when germination of annual-based pastures occurred, was 1.2–1.9 t/ha at one site and 0.2–1.6 t/ha at another site. Long-season annual pastures produced significantly more DM than either lucerne or subterranean clover-based pastures in one season at one site but produced significantly less DM than either lucerne or subterranean clover-based pasture at another site in another season. Long-season annual-based pastures extracted amounts of soil water to a depth of 5 m similar to subterranean clover-based pasture when these were grown on deep sand and a duplex soil. In contrast, lucerne removed an additional 128 mm of water to 5 m, with 70 mm of this water being drawn from 2.5–5 m, compared with subterranean clover-based pasture. Lucerne was comparatively less effective in extracting water from a duplex soil where rooting depth was restricted to 2 m by a saline watertable. Early germination of annual pastures appeared to reduce drainage compared with a crop treatment where weeds were killed in autumn and early winter ahead of seeding. The need for studies at landscape scales that include concurrent measurements of groundwater levels and changes in soil water content to a depth of at least 5–6 m under perennial-based production systems is highlighted.


2019 ◽  
Author(s):  
Benjamin Mary ◽  
Luca Peruzzo ◽  
Jacopo Boaga ◽  
Nicola Cenni ◽  
Myriam Schmutz ◽  
...  

Abstract. This paper presents a time-lapse application of electrical methods (Electrical Resistivity Tomography – ERT – and Mise-à-la-Masse – MALM) for monitoring plant roots and their activity (root water uptake) during a controlled infiltration experiment. The use of non-invasive geophysical monitoring is of increasing interest as these techniques provide time-lapse imaging of processes that otherwise can only be measured at few specific spatial locations. The experiment here described was conducted in a vineyard in Bordeaux (France) and was focused on the behaviour of two neighbouring grapevines. The joint application of ERT and MALM has several advantages. While ERT in time-lapse mode is sensitive to changes in soil electrical resistivity and thus to the factors controlling it (mainly soil water content, in this context), MALM uses DC current injected in a tree stem to image where the plant-root system is in effective electrical contact with the soil at locations that are likely to be the same where root water uptake (RWU) takes place. Thus ERT and MALM provide complementary information about the root structure and activity. The experiment shows that the region of likely electrical current sources produced by MALM does not change significantly during the infiltration study time in spite of the strong changes of electrical resistivity caused by changes in soil water content. This fact, together with the evidence that current injection in the soil produces totally different patterns, corroborates the idea that this application of MALM highlights the active root density in the soil. When considering the electrical resistivity changes (as measured by ERT) inside the stationary volume of active roots delineated by MALM, the overall tendency is towards a resistivity increase, which can be linked to a decrease in soil water content caused by root water uptake. On the contrary, when considering the soil volume outside the MALM-derived root water uptake region, the electrical resistivity tends to decrease as an effect of soil water content increase caused by the infiltration. The results are particularly promising, and the method can be applied to a variety of scales including the laboratory scale where direct evidence of roots structure and root water uptake can help corroborate the approach. Once fully validated, the joint use of MALM and ERT can be used as a valuable tool to study the activity of roots under a wide variety of field conditions.


Sign in / Sign up

Export Citation Format

Share Document