Use of a simple model to study factors affecting the size distribution of tubers in potato crops

1987 ◽  
Vol 109 (3) ◽  
pp. 563-571 ◽  
Author(s):  
K. Z. Travis

SummaryA simple mathematical model of the distribution of potato tuber yield between size grades is presented. It has two parameters, μ, a measure of crop tuber size and σ, a measure of the spread of yield across size grades. The model is shown to be useful for the analysis of field experiments, the prediction and physiological study of tuber size distribution, and the economic analysis of management decisions. The model is applied to a variety of dataandthe practical control of tuber size discussed.

2020 ◽  
Author(s):  
Luuk C. M. van Dijk ◽  
Willemien J. M. Lommen ◽  
Michiel E. de Vries ◽  
Olivia C. Kacheyo ◽  
Paul C. Struik

AbstractA novel cropping system for potato was tested for two consecutive years under normal Dutch agronomic conditions. Seedlings from two experimental genotypes of hybrid true potato seeds were produced in a greenhouse nursery and transplanted into the field 5 weeks after sowing to assess tuber yield levels and to study effects of hilling on tuber yield and number, tuber size distribution and tuber greening. Field experiments had a split-plot design with hilling treatments as the main plots and genotypes as the sub-plots. Final harvest was at 122 and 132 days after transplanting in 2017 and 2018, respectively. Hybrid seedlings were transplanted into small initial ridges and irrigated straight after planting. Three hilling treatments were applied between transplanting and 100% canopy cover. Treatment ‘zero hilling’ did not receive any additional hilling after transplanting. Treatments ‘double hilling’ and ‘triple hilling’ received two and three additional hilling treatments, respectively. Total tuber yields at final harvest in both years were not affected by the hilling treatments. Yields for the respective genotypes were 26 and 30 Mg/ha in 2017 and 25 and 32 Mg/ha in 2018. Total tuber numbers were only affected by hilling treatments in 2017, where under hilled conditions, plants produced more tubers compared with plants under zero hilling. Plants under zero hilling yielded more tubers in size class > 40 mm compared with triple hilling in 2017. In 2018, no significant effects of hilling on tuber numbers were found, but the trend was similar to that in 2017.


1976 ◽  
Vol 86 (2) ◽  
pp. 251-255
Author(s):  
D. C. E. Wurr

SummaryApplication of methyl decanoate to a potato crop about the time of tuber initiation reduced the total yield and the yield of tubers in the grade 2·5–5·5 cm though neither of these reductions were significant. However, application of 2,3,5-triiodobenzoic acid increased the yield of tubers 2·5–5·5 cm by up to 20% while having no significant effect on total tuber yield. This change in the tuber size distribution was due to a more even partition of photosynthate between tubers and not to an increase in the total number of tubers.


Euphytica ◽  
2019 ◽  
Vol 215 (11) ◽  
Author(s):  
Ernest B. Aliche ◽  
Marian Oortwijn ◽  
Tom P. J. M. Theeuwen ◽  
Christian W. B. Bachem ◽  
Herman J. van Eck ◽  
...  

Abstract Drought sensitivity of potato leads to a reduction in total tuber yield and marketable yield. An investigation of drought effects on tuber yield attributes will facilitate our understanding of how to reduce such huge yield losses. We have evaluated tuber yield, tuber size distribution and marketable yield of a set of 103 European commercial potato cultivars under irrigated and non-irrigated conditions in the field. The multi-year results from two locations, Connantre, France (2013–2015) and Nieuw-Namen in Zeeland, The Netherlands (2013–2014), were analysed. We used Normal and Gamma Distribution models to describe the tuber size distribution of tuber fresh weight and tuber number, respectively. The interactions among parameters of tuber size distribution and total/marketable tuber yield traits were analysed using correlation matrices and biplots. Finally, we used a 14K Infinium SNP marker array to find associations between the parameters or traits and genetic loci on the potato genome. Late foliage maturity facilitated a wider spread of tuber size distribution in favour of larger-sized tubers. Drought effects on total yield were representative of their impact on marketable yield, however, absolute values of total tuber number may not be indicative of marketable number of tubers. We found significant marker-trait associations between a region on chromosome 3 and the spread of tuber number distribution, size class with maximum tuber number and marketable fractions of tuber number and tuber weight. These findings will contribute to improvement and selection for drought tolerance in potato.


2007 ◽  
Vol 87 (4) ◽  
pp. 829-839 ◽  
Author(s):  
A. N. Cambouris ◽  
B. J. Zebarth ◽  
M. C. Nolin ◽  
M. R. Laverdière

This study evaluated the effect of rate and timing of N fertilizer application on tuber yield, tuber size distribution and tuber specific gravity of potato (Solanum tuberosum L.) in two sites in a commercial field in 1999–2001. One trial was established at each of the two sites chosen to represent two management zones (MZ) previously delineated by soil electrical conductivity, and differing in soil water availability, as controlled by depth to a clayey substratum. Each trial had 21 treatments including five rates of ammonium nitrate (0–200 kg N ha-1 in 1999; 0–240 kg N ha-1 in 2000 and 2001), each applied according to five application timings (100, 75, 50, 25 or 0% of N applied at planting with the remainder applied at hilling). Increasing N rate increased total and marketable tuber yields in both sites. The N rates required to optimize economic return ranged from 167 to 239 kg ha-1 among years and between sites. Nitrogen fertilizer applied all at planting or all at hilling decreased tuber yields in both sites compared with split N application. The percentage of N rate applied at planting to achieve the maximum marketable tuber yield varied among years from 34 to 61% and allowed a yield increase of 2 to 20%. The proportion of large tubers was higher in the site with a greater depth to the clayey substratum (DMZ site) than in the site with a shallower depth to the clayey substratum (SMZ site). Tuber yield and tuber N uptake were higher in the SMZ site than in the DMZ site when no fertilizer N was applied, and tuber yield was more responsive to fertilizer N rate in the DMZ site than in the SMZ site in one year; however, these differences are not sufficient to justify different fertilizer N management for the two sites. The two sites frequently differed in terms of tuber yield, tuber size and specific gravity, which are important parameters in determining tuber processing quality but the optimal N rate and N timing were similar. These differences may be sufficiently large to justify different potato management practices (e.g., nutrient management, seedpiece spacing) to optimize potato production for the chip processing market. Key words: Solanum tuberosum, marketable yield, tuber size distribution, specific gravity, N economic optimum


2021 ◽  
Vol 12 ◽  
Author(s):  
Ingrid Martínez ◽  
Manuel Muñoz ◽  
Ivette Acuña ◽  
Marco Uribe

One of the main factors limiting the productivity of potatoes (Solanum tuberosum L.) is water stress. Two irrigation systems: full irrigation (I) and rainfed conditions (R), were compared over the growing seasons from 2012–13 to 2019–20. The evaluated varieties were Desiree, Karú-INIA, Patagonia-INIA, Puyehue-INIA, Yagana-INIA, Yaike, and Porvenir. This study determined (i) the yield and tuber size distribution, (ii) their relationship between productivity and environmental conditions, and (iii) the most drought-tolerant varieties based on drought tolerance indices. Nine indices including yield index (YI), tolerance index (TOL), mean productivity (MP), geometric mean productivity (GMP), harmonic mean (Harm), stress tolerance index (STI), harmonic mean productivity (HMP), yield reduction (Yr), and stress susceptible index (SSI) were calculated by using tuber yield under I and R conditions. Tuber yield under R conditions decreased by 27 and 34%. However, the highest yield under R conditions occurred in years with more precipitation between 60 and 120 days after planting (DAP; ±60 mm). Under R conditions, the varieties Porvenir, Patagonia-INIA, Yaike, and Puyehue-INIA showed more tolerance to water stress. Water stress negatively affected tuber size distribution, reducing the production of tubers with size >65 mm by 50–60%. The best indices to study drought tolerance were TOL, MP, GMP, Harm, STI, and HMP. This study suggests that in southern Chile, an area with big yield potential, typically cultivated as rainfed, with cool temperate climate conditions and favorable soil properties for potatoes, as Andisols, available rainfall is still a constraint for yield. Therefore, using more water stress-tolerant varieties and providing supplementary irrigation between 60 and 120 DAP are critical to optimize yield and avoid the failure of the crop in years with remarkably low precipitations, which will be more pronounced in the future according to weather trends. These results exemplify how much we can lose in productivity in rainfed conditions even in one of the most favorable areas for growing potatoes in the world and how risky this situation can be for the performance of the potato farms in the future.


1990 ◽  
Vol 82 (1) ◽  
pp. 88-90 ◽  
Author(s):  
J. B. Sanderson ◽  
R. P. White ◽  
H. W. Platt ◽  
J. A. Ivany

2001 ◽  
Vol 78 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Walter J. Arsenault ◽  
Debby A. LeBlanc ◽  
George C. C. Tai ◽  
Peter Boswall

1993 ◽  
Vol 36 (3) ◽  
pp. 237-245 ◽  
Author(s):  
D. C. E. Wurr ◽  
Jane R. Fellows ◽  
J. R. Lynn ◽  
E. J. Allen

Sign in / Sign up

Export Citation Format

Share Document