Nitrogen management of fallow crops in Canadian prairie soils

2012 ◽  
Vol 92 (7) ◽  
pp. 1389-1401
Author(s):  
R. E. Karamanos ◽  
F. Selles ◽  
D. C. James ◽  
F. C. Stevenson

Karamanos, R. E., Selles, F., James, D. C. and Stevenson, F. C. 2012. Nitrogen management of fallow crops in Canadian prairie soils. Can. J. Plant Sci. 92: 1389–1401. The ability of fallow to supply nitrogen (N) to crops has been questioned, particularly for crops with greater N requirements. A study was conducted to determine canola (Brassica napus L.) and wheat (Triticum aestivum L.) responses to a range of N fertilizer rates (0–75 kg N ha−1 for canola and 0–50 kg N ha−1 for wheat) at 17 fallow sites across Saskatchewan and Alberta, Canada, from 2003 to 2005. Yield and N uptake responses to progressively greater N fertilizer rates were curvilinear for both crops. Maximum yield occurred with 76 kg N ha−1 for canola yield (2190 kg ha−1) and 47 kg N ha−1 for wheat (2910 kg ha−1). Maximum N uptake occurred at about 90 kg N ha−1 for both crops. Wheat grain yield and N uptake responses were mostly associated with normalized difference vegetation index (NDVI) at anthesis or flag leaf, whereas canola yields and N uptake were most associated with NDVI at five-leaf or bolting, or Cardy Nitrate meter at bolting. The preceding relationships were most apparent at the highest N fertilizer rates. Canola and wheat water use were not affected by N fertilizer rate, but water use efficiency increased linearly for both crops as N fertilizer rate was increased.

2020 ◽  
Vol 63 (6) ◽  
pp. 2003-2020
Author(s):  
Maria I. Zamora Re ◽  
Sagarika Rath ◽  
Michael D. Dukes ◽  
Wendy Graham

HighlightsDSSAT simulations of final N uptake, biomass, and yield for a maize-peanut rotational field experiment with three irrigation treatments and three N fertilizer rates had good performance for the irrigated treatments (average nRMSE of 9%) but greater error for the rainfed treatments (average nRMSE of 15%).Experiments and DSSAT simulations demonstrated that N fertilizer and irrigation applications were reduced by 26% and 60%, respectively, when using a 247 kg N ha-1 fertilizer rate and a sensor-based irrigation schedule rather than conventional practices of 336 kg N ha-1 and a calendar-based irrigation method, with no impact on yield.Simulations demonstrated that N leaching during the crop rotation was reduced by 37% when an N fertilizer rate of 247 kg N ha-1 and sensor-based irrigation scheduling were used versus conventional practices.Soil N increased (=15 mg kg-1) when maize and peanut residues decayed and then leached during the fallow season. Cover or cash crops planted immediately after the maize and peanut harvests have potential to take up this N and reduce leaching.Abstract. Nitrogen (N) is an essential element for crop growth and yield; however, excessive N applications not taken up by crops can result in N leaching from the root zone, increasing N loads to waterbodies and leading to a host of environmental problems. The main objective of this study was to simulate water and N balances for a maize-peanut (Zea mays L. and Arachis hypogaea L.) rotational field experiment with three irrigation treatments and three N fertilizer rates. The irrigation treatments consisted of mimicking grower irrigation practices in the region (GROW), using soil moisture sensors to schedule irrigation (SMS), and non-irrigated (NON). The N fertilizer rates were low, medium, and high (157, 247, and 336 kg N ha-1, respectively) for maize with a constant 17 kg ha-1 for all peanut treatments. DSSAT maize genetic coefficients were calibrated using the SMS-high treatment combination under the assumption of no water or N stress. The other eight treatment combinations were used as independent data for model validation of the crop coefficients. All soil hydrologic parameters were specified based on measured values, and default DSSAT peanut genetic coefficients were used with no calibration. For the irrigated treatments, DSSAT models had good performance for N uptake, biomass, and yield (average nRMSE of 8%) and moderate performance for soil water content (average nRMSE of 18%). Soil nitrate RMSE was 21% lower than the standard deviation of the observed data (5.8 vs. 7.2 mg kg-1). For the rainfed treatments, DSSAT had greater error (average nRMSE of 15% for N uptake, biomass, and yield, and average nRMSE of 31% for soil water). Soil nitrate RMSE was 11% greater than the standard deviation of the observed data (8.0 vs. 7.2 mg kg-1), and nRMSE was >30% during the crop rotation. Simulations estimated that N leaching over the crop rotation was reduced by 24% on average when using the 247 kg N ha-1 fertilizer rate compared to 336 kg N ha-1 across the irrigation treatments. Furthermore, N leaching was reduced by 37% when using SMS to schedule irrigation and the 247 kg N ha-1 fertilizer rate for maize and 17 kg N ha-1 for peanut compared to conventional practices (GROW and 336 kg N ha-1 for maize and 17 kg N ha-1 for peanut). Moreover, this management practice reduced N fertilizer use by 26% and irrigation water use by up to 60% without negative impacts on yield. Observed and simulated soil N increased during maize and peanut residue decay, with simulations estimating that this soil N would leach below the root zone during the fallow season. This leaching could potentially be reduced if a cover crop or cash crop were planted between the maize and peanut crops to take up the mineralized N. Keywords: Agricultural best management practices, Bare fallow, BMPs, Maize-peanut rotation, N balance, N fertilization, N leaching, Sandy soils, Sensor-based irrigation scheduling, Water balance.


2009 ◽  
Vol 89 (3) ◽  
pp. 501-503 ◽  
Author(s):  
H. Cutforth ◽  
B. McConkey ◽  
S. Brandt ◽  
Y. Gan ◽  
G. Lafond ◽  
...  

Canola is a viable crop when grown under fallow in the semiarid prairie, but is also grown in longer rotations, most often no-till seeded into standing stubble. Selecting the proper N fertilizer rate is a very challenging production decision, but most of the available nitrogen response for canola has been derived for the more subhumid parts of the Canadian prairies. We developed simple quadratic equations to describe the yield relationship for stubble-seeded open-pollinated and hybrid canola in the semiarid Canadian prairie. These relationships indicate that hybrid canola produced higher grain yields at all fertilizer rates and had optimum N fertilizer rates about 50% higher than those for open-pollinated canola. Key words: Canola, fertilizer N, grain yield, water use, semiarid prairie


2016 ◽  
Vol 155 (4) ◽  
pp. 599-612 ◽  
Author(s):  
C. ZOU ◽  
R. C. PEARCE ◽  
J. H. GROVE ◽  
M. S. COYNE

SUMMARYFew studies have investigated nitrogen (N) fertilizer management in no-tillage (NT) tobacco (Nicotiana tobacumL.) production systems, even though N fertilization is known to influence tobacco cured leaf yield and quality. The present study evaluated how tillage practice and N fertilizer rate affected burley tobacco agronomic performance, plant available nitrogen (PAN) supply, and leaf chemical constituents. In 2012 and 2013, three N fertilizer rates (0, 140 and 280 kg N/ha) were introduced as split-plots within a long-term NT and conventional tillage (CT) (mouldboard plough) comparison study. Results (2007–2013) showed that the effect of tillage on tobacco yield depended on seasonal weather; NT tobacco appeared to have lower yield than CT tobacco in seasons with <450 mm growing season rainfall, but similar yields when rainfall was >500 mm. In 2012 (432 mm rainfall; 84% of the long-term seasonal mean), leaf SPAD reading, leaf nitrate concentration, total nitrogen concentration at the topping day (i.e. removal of flowers/buds at the tops of the plants) and cured leaf nicotine and alkaloid content suggested that N deficiency was more pronounced in NT than CT at the lowest N fertilizer rate. The PAN supply, as measured by a modifiedin situresin core method, was similar in 2012 between NT and CT, suggesting that plant factors may have had a role in N uptake efficiency. This scenario did not repeat in 2013 (706 mm rainfall; 137% of the long-term seasonal mean). Even though N fertilization rates were identical for both tillage practices in 2012 and 2013, PAN was lower, on average, in 2012. Because N uptake is largely the result of mass flow, the impact of reduced root density in NT tobacco would be expected to be more pronounced in a season such as 2012, when water was limited. Banding N close to the tobacco root system and/or side-dressing some portion of N may be recommended strategies to improve N use efficiency in NT burley tobacco production.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 864E-864
Author(s):  
Erik B.G. Feibert ◽  
Clinton C. Shock ◽  
Lamont D. Saunders

Seven potato cultivars were grown on silt loam with six N fertilizer treatments in 1992, 1993, and 1994 to evaluate varietal response to N fertilizer rate and timing under precision sprinkler irrigation. Crop evapotranspiration was replaced when the soil water potential at 0.2-m depth reached –60 kPa. Maximum yield responses were obtained using 0 to 134 kg N/ha, depending on the year and experimental site. In 1993 and 1994, with wheat as the previous crop, 134 kg N/ha maximized yields, over all varieties. In 1992, with alfalfa as the previous crop, there was no positive yield or grade response to N, over all varieties. Each year, available soil N accounting showed large surpluses for all treatments. Nitrogen mineralization contributed from 80 to 280 kg N/ha per year to the soil supply.


Author(s):  
Faridah Manaf ◽  
Roslan Ismail ◽  
Arina Shairah Abdul Sukor

Reducing nitrogen (N) fertilizer rate have beneficial effect on N uptake by plants. Studies on reducing N rate in sweet potato and beetroot to improve their growth and yield are well documented but the effect of decreased N rate on N uptake by leafy vegetables are limited. A glasshouse experiment was conducted to determine the effect of different N rate on N uptake of green spinach. Treatments evaluated were (i) soil alone, and (ii) different N fertilizer rate (12, 24, 36, 60, 90 and 120 kg N/ha). Treatments were applied at 14 days after seeding (DAS) at a uniform rate of 2 t/ha. Results revealed that moderate N input between 12 to 36 kg N/ha improved N uptake and yield of spinach compared with lower rate of N input (0 to 12 kg N/ha) but higher N level of 90 kg N/ha was most effective in improving N uptake and fresh yield. The effectiveness of N input at 90 kg N/ha corresponded to the optimum retention of soil N resulting in timely availability of N for uptake by spinach leading to higher yield. Although treatment with excess N (120 kg N/ha) improved N uptake, the decline in yield was because of soil nutrient imbalance that inhibited other nutrients required by plants for growth and development. The findings from the study suggest that reducing N fertilizer rate improves N uptake in leafy vegetables without reducing productivity depending on their specific N requirement.


2013 ◽  
Vol 37 (6) ◽  
pp. 1641-1650 ◽  
Author(s):  
Telmo Jorge Carneiro Amado ◽  
Enrique Oswin Hahn Villalba ◽  
Rafael Pivotto Bortolotto ◽  
Antônio Luis Santi ◽  
Enrique Asterio Benítez León ◽  
...  

In order to select soil management practices that increase the nitrogen-use efficiency (NUE) in agro-ecosystems, the different indices of agronomic fertilizer efficiency must be evaluated under varied weather conditions. This study assessed the NUE indices in no-till corn in southern Paraguay. Nitrogen fertilizer rates from 0 to 180 kg ha-1 were applied in a single application at corn sowing and the crop response investigated in two growing seasons (2010 and 2011). The experimental design was a randomized block with three replications. Based on the data of grain yield, dry matter, and N uptake, the following fertilizer indices were assessed: agronomic N-use efficiency (ANE), apparent N recovery efficiency (NRE), N physiological efficiency (NPE), partial factor productivity (PFP), and partial nutrient balance (PNB). The weather conditions varied largely during the experimental period; the rainfall distribution was favorable for crop growth in the first season and unfavorable in the second. The PFP and ANE indices, as expected, decreased with increasing N fertilizer rates. A general analysis of the N fertilizer indices in the first season showed that the maximum rate (180 kg ha-1) obtained the highest corn yield and also optimized the efficiency of NPE, NRE and ANE. In the second season, under water stress, the most efficient N fertilizer rate (60 kg ha-1) was three times lower than in the first season, indicating a strong influence of weather conditions on NUE. Considering that weather instability is typical for southern Paraguay, anticipated full N fertilization at corn sowing is not recommended due the temporal variability of the optimum N fertilizer rate needed to achieve high ANE.


2010 ◽  
Vol 90 (2) ◽  
pp. 179-184 ◽  
Author(s):  
C L Vera ◽  
S S Malhi ◽  
S M Phelps ◽  
W E May ◽  
E N Johnson

Industrial hemp (Cannabis sativa L.) has become a well-known crop in western Canada in recent years, but insufficient information is available on its nutrient requirements for optimum yield. Our objective was to confirm the response of two hemp cultivars to increasing levels of nitrogen (N), phosphorus (P) and sulphur (S) in various sites in the province of Saskatchewan, during 2006-2008. Increasing N rates significantly increased plant height, biomass, and seed yield, when data were averaged across all sites (location-years), reaching maximum values at about 150 kg N ha-1 of applied N fertilizer. The cultivar Crag was taller and produced greater biomass than the cultivar Finola over all levels of N fertilizer rate. The minimum rate of N fertilizer to achieve maximum height/biomass for Crag, relative to Finola, was 5 kg N ha-1 lower for height (Finola: 163 kg N ha-1) but 9 kg N ha-1 higher for biomass (Finola: 180 kg N ha-1). Finola seed yield was more responsive to progressively greater rates of N fertilizer. Consequently, maximum seed yield (plateau) was 27% greater for Finola than for Crag, but 198 kg N ha-1 of fertilizer was required to achieve this maximum yield vs. 175 kg N ha-1 for Crag. There was generally little or no response to P fertilizer, on soils with adequate available P, or to S fertilizer on an S-deficient soil. Results from this study indicate that N fertilizer rate and cultivar choice are important management parameters to consider for industrial hemp production.Key words: Fertilizer, hemp cultivars, nitrogen, phosphorus, sulphur, soil extractable P, soil nitrate-N


2000 ◽  
Vol 80 (1) ◽  
pp. 203-212 ◽  
Author(s):  
N. Ziadi ◽  
R. R. Simard ◽  
G. Allard ◽  
G. Parent

Soil N availability is an important factor in forage grass production. Maximising N fertilizer efficiency is essential to improve profitability and to reduce the environmental risk associated with residual excess soil N. The objectives of this study were (i): to determine the effects of N fertilizer on yield, N uptake and NO3–N concentration of forage grasses produced in Western Quebec; and (ii) to compare spring soil NO3−measured by anionic exchange membranes (NO3AEMs) and by water extraction (NO3w) as a criterion to predict fertilizer N requirements of forage grasses. The yield response of grasses, especially timothy (Phleum pratense L.), to different rates of NH4NO3 (0 to 240 kg N ha−1) on heavy clay soils (Humic Gleysols) was studied from 1994 to 1996 at four sites in the Abitibi-Temiscamingue area, Quebec (Canada). Nitrogen significantly (P < 0.001) increased forage yield, N uptake, and NO3–N concentration. The economically optimum N fertilizer rate (Nop) for forage yield varied from 25 to 240 kg N ha−1 depending on sites and years, and averaged 125 kg N ha−1. The Nop can be predicted more adequately by NO3AEMs (R2 = 0.45) than by NO3w (R2 = 0.09). Based only on the relationship between the relative yield and spring soil nitrate, NO3AEMs could be used as a criterion for fertilizer N recommendation of forage grasses in this cool continental climate. Key words: N fertilizer, nitrate, grass, economically optimum N fertilizer rate


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1722-1727 ◽  
Author(s):  
Clinton C. Shock ◽  
Erik B. G. Feibert ◽  
Lamont D. Saunders

Onion (Allium cepa L.) production in the Treasure Valley of eastern Oregon and southwestern Idaho has been based on furrow irrigation with 318 kg·ha-1 N fertilizer and average yields of 70 Mg·ha-1, but these practices have been implicated in nitrate contamination of groundwater. Drip irrigation, introduced in the early 1990s, has several advantages, including reduced leaching losses. Since onion plant populations and N fertilizer rates can affect economic returns, studies were conducted in 1999, 2000, and 2001 to determine optimum plant populations and N fertilizer rates for subsurface drip-irrigated onion. Long-day onion (`Vision') was subjected to a combination of seven nitrogen fertilization rates (0 to 336 kg·ha-1 in 56-kg increments applied between late May and early July) and four plant populations (185, 250, 300, and 370 thousand plants/ha). Onion was grown on silt loam in two double rows spaced 0.56 m apart on 1.1 m beds with a drip tape buried 13 cm deep in the bed center. Soil water potential was maintained nearly constant at -20 kPa by automated irrigations based on soil water potential measurements at a 0.2-m depth. Onion bulbs were evaluated for yield and grade after 70 days of storage. Onion yield and grade were highly responsive to plant population. Onion marketable yield increased, and bulb diameter decreased with increasing plant population. Within the range of plant populations tested, gross returns were not always responsive to plant population. Returns were increased by the increase in marketable yield obtained with higher plant population, but higher plant population also reduced the production of the largest sized bulbs which had the highest value per weight. Onion yielded 95 Mg·ha-1 with no applied N fertilizer, averaged over plant populations and years. Onion yield and grade were not responsive to N fertilizer rate or interaction of N fertilizer rate with plant population. Preplant soil available N, N mineralization, and N in irrigation water all contributed N to the crop. Onion N uptake did not increase with increasing N fertilizer rate.


Sign in / Sign up

Export Citation Format

Share Document