The use of earth observation methods for estimating regional crop evapotranspiration and yield for water footprint accounting

2017 ◽  
Vol 156 (5) ◽  
pp. 599-617 ◽  
Author(s):  
G. Papadavid ◽  
L. Toulios

AbstractRemote sensing can efficiently support the quantification of crop water requirements included in the goal of assessing water footprints, which is to analyse how human activities or specific products relate to issues of water scarcity and pollution and identify how activities and products can become more sustainable from a water perspective. Remote sensing techniques have become popular in estimating actual crop evapotranspiration and hence crop water requirements in recent decades due to the advantages they offer to users, e.g. low cost, regional data and use of maps instead of point measurements as well as saving time. The use of earth observation data supports models’ accuracy in the procedure for assessing water footprint, since no average values are used: instead, users have real values for the specific parameters.The present study provides two examples of how remote sensing techniques are used essentially for estimating evapotranspiration along with crop yield, two basic parameters, for assessing water footprint. Two different case studies have been illustrated to define the methodology proposed, which refers to Mediterranean conditions and can be applied after inferring the necessary field data of each crop. The first case study refers to the application of Surface Energy Balance Algorithm for Land (SEBAL) for estimating evapotranspiration, while the second refers to the Crop Yield prediction. Both elements, such as evapotranspiration and crop yield, are vital for water footprint accounting. Firstly, the SEBAL was adopted, under the essential adaptations for local soil and meteorological conditions for estimating groundnut water requirements. Landsat-5 TM, Landsat-7 Enhanced Thematic Mapper+ and Landsat 8 OLI images were used to retrieve the required spectral data. The SEBAL model is enhanced with empirical equations regarding crop canopy factors, in order to increase the accuracy of crop evapotranspiration estimation. Maps were created for evapotranspiration (ET) using the SEBAL modified model for the area of interest. The results were compared with measurements from an evaporation pan, used as a reference. Statistical comparisons showed that the modified SEBAL can predict ETc in a very effective and accurate way and provide water footprint modellers with high-level crop water data. Yield prediction plays a vital role in calculating water footprint. Having real values rather than taking reference (or averaged) values from FAO is an advantage that Earth Observation means can provide. This is very important in econometric or any other prediction models used for estimating water footprint because using average data reduces accuracy. In this context, crop and soil parameters along with remotely sensed data can be used to develop models that can provide users with accurate yield estimations. In a second step, crop and soil parameters along with the normalized difference vegetation index were correlated to examine whether crop yield can be predicted and to define the actual time-window to predict the yield. Statistical and remote sensing techniques were then applied to derive and map a model that can predict crop yield. The algorithm developed for this purpose indicates that remote sensing observations can predict crop yields effectively and accurately. Using the statistical Student's t test, it was found that there was no statistically significant difference between predicted and real values for crop yield.

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 874 ◽  
Author(s):  
Javier J. Cancela ◽  
Xesús P. González ◽  
Mar Vilanova ◽  
José M. Mirás-Avalos

This document intends to be a presentation of the Special Issue “Water Management Using Drones and Satellites in Agriculture”. The objective of this Special Issue is to provide an overview of recent advances in the methodology of using remote sensing techniques for managing water in agricultural systems. Its eight peer-reviewed articles focus on three topics: new equipment for characterizing water bodies, development of satellite-based technologies for determining crop water requirements in order to enhance irrigation efficiency, and monitoring crop water status through proximal and remote sensing. Overall, these contributions explore new solutions for improving irrigation management and an efficient assessment of crop water needs, being of great value for both researchers and advisors.


2014 ◽  
Vol 03 (02) ◽  
pp. 57-65 ◽  
Author(s):  
Mohammed A. El-Shirbeny ◽  
Abd-Elraouf M. Ali ◽  
Nasser H. Saleh

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1117
Author(s):  
Anatoly Mikhailovich Zeyliger ◽  
Olga Sergeevna Ermolaeva

In the past few decades, combinations of remote sensing technologies with ground-based methods have become available for use at the level of irrigated fields. These approaches allow an evaluation of crop water stress dynamics and irrigation water use efficiency. In this study, remotely sensed and ground-based data were used to develop a method of crop water stress assessment and analysis. Input datasets of this method were based on the results of ground-based and satellite monitoring in 2012. Required datasets were collected for 19 irrigated alfalfa crops in the second year of growth at three study sites located in Saratovskoe Zavolzhie (Saratov Oblast, Russia). Collected datasets were applied to calculate the dynamics of daily crop water stress coefficients for all studied crops, thereby characterizing the efficiency of crop irrigation. Accordingly, data on the crop yield of three harvests were used. An analysis of the results revealed a linear relationship between the crop yield of three cuts and the average value of the water stress coefficient. Further application of this method may be directed toward analyzing the effectiveness of irrigation practices and the operational management of agricultural crop irrigation.


2017 ◽  
Author(s):  
◽  
Akinola Mayowa Ikudayisi

Water is an essential natural resource for human existence and survival on the earth. South Africa, a water stressed country, allocates a high percentage of its available consumptive water use to irrigation. Therefore, it is necessary that we optimize water use in order to enhance food security. This study presents the development of mathematical models for irrigation scheduling of crops, optimal irrigation water release and crop yields in Vaal Harts irrigation scheme (VIS) of South Africa. For efficient irrigation water management, an accurate estimation of reference evapotranspiration (ETₒ) should be carried out. However, due to non-availability of enough historical data for the study area, mathematical models were developed to estimate ETₒ. A 20-year monthly meteorological data was collected and analysed using two data–driven modeling techniques namely principal component analysis (PCA) and adaptive neuro-fuzzy inference systems (ANFIS). Furthermore, an artificial neural network (ANN) model was developed for real time prediction of future ETₒ for the study area. The real time irrigation scheduling of potatoes was developed using a crop growth simulation model called CROPWAT. It was used to determine the crop water productivity (CWP), which is a determinant of the relationship between water applied and crop yield. Finally, a new and novel evolutionary multi-objective optimization algorithm called combined Pareto multi-objective differential evolution (CPMDE) was applied to optimize irrigation water use and crop yield on the VIS farmland. The net irrigation benefit, land area and irrigation water use of maize, potatoes and groundnut were optimized. Results obtained show that ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity have less significance on the value of ETₒ. Also, ANN models with one hidden layer showed better predictive performance compared with other considered configurations. A 5-day time step irrigation schedule data and graphs showing the crop water requirements and irrigation water requirements was generated. This would enable farmers know when, where, and how much water to apply to a given farmland. Finally, the employed CPMDE optimization algorithm produced a set of non-dominated Pareto optimal solutions. The best solution suggests that maize, groundnut and potatoes should be planted on 403543.44 m2, 181542.00 m2 and 352876.05 m2areas of land respectively. This solution generates a total net benefit of ZAR 767,961.49, total planting area of 937961.49 m2 and irrigation water volume of 391,061.52 m3. Among the three crops optimized, maize has the greatest land area, followed by potatoes and groundnut. This shows that maize is more profitable than potatoes and groundnut with respect to crop yield and water use in the study area.


2021 ◽  
Vol 12 (1) ◽  
pp. 117-125
Author(s):  
GA Ali ◽  
TA Ademiju ◽  
JA Osunbitan

This study was carried out to determine the crop water and irrigation requirement of some selected crops in southwestern Nigeria. The crops are cucumber, water melon, maize, groundnut, eggplant and tomato. Irrigation requirement and crop coefficient for each crops were determined from the interrelationships of the evapotranspiration, soil type, bulk density, field capacity and the effective root zone of the crops at the selected locations using CROPWAT for windows version 8. Soil parameters used for analysis were determined from laboratory experiment. The crop evapotranspiration and water requirement for cucumber varied from 2.52 to 7.21mm/day and 17 to 73.2mm/dec, respectively, for maize from 1.36 to 6.35mm/day and 5.1 to 63.5mm/dec respectively, for watermelon varied from 2.59 to 6.67mm/day and 25.9 to 73.3mm/dec respectively, for eggplant varied from 1.92 to 6.35 mm/day and 15.9 to 64.4mm/dec respectively. The irrigation requirement for water melon and cucumber recorded the highest value of 461.6 and 497.4mm/dec respectively, an indication that the two crops require more water for physiological activities. The reduction in the values of crop coefficient was observed during the study which could be attributed to the reduction in evapotranspiration at the late stage of growth. The findings also showed that known quantities of irrigation water could be used in producing crops optimally.


Sign in / Sign up

Export Citation Format

Share Document