Isolation and identification of lactic acid bacteria in fresh plants and in silage from Opuntia and their effects on the fermentation and aerobic stability of silage

2019 ◽  
Vol 157 (9-10) ◽  
pp. 684-692
Author(s):  
G. A. Pereira ◽  
E. M. Santos ◽  
G. G. L. Araújo ◽  
J. S. Oliveira ◽  
R. M. A. Pinho ◽  
...  

AbstractThe current study aimed to select the strains of lactic acid bacteria (LAB) isolated from forage cactus plants and silage and assess their effects on silage fermentation and aerobic stability. Forty wild isolates from plant and cactus silage, classified as LAB, were evaluated for metabolite production and identified by 16S ribosomal DNA sequencing. These wild isolates were identified as Lactobacillus plantarum, Weissella cibaria, Weissella confusa and Weissella paramesenteroides and the LAB populations differed among the silage. The use of microbial inoculants did not influence gas or effluent losses in forage cactus silage. The silage inoculated with the microbial strain GP15 showed the highest number of LAB populations. The amounts of water-soluble carbohydrates (WSC) and ammonia nitrogen differed among the silage. The silage inoculated with the GP1 strain presented the highest WSC. Populations of enterobacteria and yeasts and moulds were below the minimum detection limit (<2.0 log cfu/g silage) in all the silage studied. The predominant action of inoculants was to maximize dry matter recovery of the silage, which could be the criterion adopted to select the strains of LAB for use as inoculants in Opuntia silage.

2019 ◽  
Vol 59 (8) ◽  
pp. 1584
Author(s):  
Huazhe Si ◽  
Hanlu Liu ◽  
Zhipeng Li ◽  
Weixiao Nan ◽  
Chunai Jin ◽  
...  

Changes in the microbial community are closely related to the fermentation of silage. However, how host genetic variation shapes the community structure of the silage microbiota and its metabolic phenotype is poorly understood. The objective of present study was to evaluate the effects of the application of the homo-fermentative Lactobacillus plantarum and hetero-fermentative Lactobacillus buchneri strains to lucerne silage on the fermentation characteristics, aerobic stability, and microbial community and their correlations. The three silages treated with L. plantarum or L. buchneri were well preserved and had significantly lower pH values, butyric acid, propionic acid, and ammonia-N concentrations, and significantly higher residual water-soluble carbohydrate, dry matter and lactic acid contents than the controls. The treated groups had more lactic acid bacteria and lower quantities of other bacteria in their microbial communities. Inoculation of lactic acid bacteria influenced the abundances of other bacteria and controlled the silage fermentation characteristics. L. buchneri inhibited the abundance of Enterobacter_ludwigii to increase the crude protein content, L. plantarum improve the neutral detergent fibre content by affecting the abundance of Arthrobacter_sp._Ens13. In conclusion, the application of L. plantarum and L. buchneri improved the quality of lucerne silage fermentation, and L. buchneri resulted in greater improvements after aerobic exposure.


2019 ◽  
Vol 59 (8) ◽  
pp. 1528
Author(s):  
Huazhe Si ◽  
Hanlu Liu ◽  
Zhipeng Li ◽  
Weixiao Nan ◽  
Chunai Jin ◽  
...  

Changes in the microbial community are closely related to the fermentation of silage. However, how host genetic variation shapes the community structure of the silage microbiota and its metabolic phenotype is poorly understood. The objective of present study was to evaluate the effects of the application of the homo-fermentative Lactobacillus plantarum and hetero-fermentative Lactobacillus buchneri strains to lucerne silage on the fermentation characteristics, aerobic stability, and microbial community and their correlations. The three silages treated with L. plantarum or L. buchneri were well preserved and had significantly lower pH values, butyric acid, propionic acid, and ammonia-N concentrations, and significantly higher residual water-soluble carbohydrate, dry matter and lactic acid contents than the controls. The treated groups had more lactic acid bacteria and lower quantities of other bacteria in their microbial communities. Inoculation of lactic acid bacteria influenced the abundances of other bacteria and controlled the silage fermentation characteristics. L. buchneri inhibited the abundance of Enterobacter_ludwigii to increase the crude protein content, L. plantarum improve the neutral detergent fibre content by affecting the abundance of Arthrobacter_sp._Ens13. In conclusion, the application of L. plantarum and L. buchneri improved the quality of lucerne silage fermentation, and L. buchneri resulted in greater improvements after aerobic exposure.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1575
Author(s):  
Fuhou Li ◽  
Zitong Ding ◽  
Adegbola T. Adesogan ◽  
Wencan Ke ◽  
Yun Jiang ◽  
...  

The effects of two strains of class IIa bacteriocin-producing lactic acid bacteria, Lactobacillus delbrueckii F17 and Lactobacillus plantarum (BNCC 336943), or a non-bacteriocin Lactobacillus plantarum MTD/1 (NCIMB 40027), on fermentation quality, microbial counts, and aerobic stability of alfalfa silage were investigated. Alfalfa was harvested at the initial flowering stage, wilted to a dry matter concentration of approximately 32%, and chopped to 1 to 2 cm length. Chopped samples were treated with nothing (control, CON), Lactobacillus delbrueckii F17 (F17), Lactobacillus plantarum (BNCC 336943) (LPB), or Lactobacillus plantarum MTD/1 (NCIMB 40027) (LPN), each at an application rate of 1 × 106 colony-forming units/g of fresh weight. Each treatment was ensiled in quadruplicate in vacuum-sealed polyethylene bags packed with 500 g of fresh alfalfa per bag and ensiled at ambient temperature (25 ± 2 °C) for 3, 7, 14, 30, and 60 days. The samples were then subjected to an aerobic stability test after 60 days of ensiling. Compared with the CON silage, the inoculants reduced the pH after 14 days of ensiling. After 60 days, pH was lowest in the LPB-treated silage, followed by the F17 and LPN-treated silages. Inoculation of F17 increased concentrations of lactic acid in silages fermented for 7, 14, 30, and 60 days relative to other treatments, except for the LPN-treated silages ensiled for 30 and 60 days, in which the lactic acid concentrations were similar to that of F17 silage. Application of F17 and LPB decreased the number of yeast and mold relative to CON and LPN-treated silages. Compared with the CON silage, inoculant-treated silages had greater aerobic stability, water-soluble carbohydrate, and crude protein concentrations, and lower neutral detergent fiber, amino acid nitrogen, and ammonia nitrogen concentrations. The LPB-treated silage had the greatest aerobic stability followed by the F17-treated silage. Both class IIa bacteriocin producing inoculants improved alfalfa silage fermentation quality, reduced the growth of yeasts and molds, and improved the aerobic stability of the ensiled forage to a greater extent than the proven LPN inoculant. However, higher crude protein concentration and lower ammonia nitrogen concentration were observed in LPN-treated silage relative to other treatments.


1995 ◽  
Vol 75 (3) ◽  
pp. 425-432 ◽  
Author(s):  
T. A. McAllister ◽  
L. B. Selinger ◽  
L. R. McMahon ◽  
H. D. Bae ◽  
T. J. Lysyk ◽  
...  

The effect of ensiling barley treated with two bacterial inoculants containing mixtures of Lactobacillus plantarum and Enterococcus faecium (1.0 × 105 cfu g−1 as fed silage) on the nutritional value and aerobic stability of barley silage was examined. Inoculants differed in the strains they contained and were originally selected by Pioneer Hi-Bred International for use with corn or alfalfa silage, SILA-BAC® (1174), or with grass silage (X2637). Concentrations of water-soluble carbohydrates were higher (P < 0.05) in inoculated than in control silages. Although inoculants appeared to increase the numbers of lactic acid producing bacteria (LAB) at ensiling, post-ensiling numbers (cfu g−1) of yeasts and molds were lower (P < 0.05) in inoculated than in control silages. Lactic acid concentrations and pH were similar among the silages and variations m the growth of yeast and mold populations could not be explained by differences in the production of volatile fatty acids (VFA) among silages. Inoculation of barley silage with either inoculant increased (P < 0.01) the average daily gain of lambs. A digestibility experiment with 12 growing ram lambs showed that inoculants did not alter (P > 0.05) DM intake, feed efficiency or the digestion of DM, organic matter, acid detergent fiber (ADF) and neutral detergent fiber (NDF). Nitrogen intake and retention were greater (P < 0.05) in lambs fed silage inoculated with 1174 as compared with control silage. Yeast populations were increased (P < 0.05) in control and 1174 after 2 d of exposure to air but it required 13 d for a similar yeast population to be established in X2637 silage. Increases in the mold populations within the silages were noted after 2, 5 and 13 d of exposure to air for control, 1174 and X2637, respectively. The temperature of control silage increased (P < 0.05) 2 d after exposure to air, whereas increases in temperature were delayed for 4 d in 1174 and 8 d in X2637. Temperatures rose as high as 30 °C in control silage, but did not exceed 24 °C in inoculated silages during the 13 d period. Key words: Barley silage, inoculant, digestion, aerobic stability, sheep, gain


2021 ◽  
Author(s):  
Duowen Sa ◽  
Qiang Lu ◽  
Gentu Ge ◽  
Lin Sun ◽  
Yushan Jia

Abstract Background: The objective of this study was to evaluate the chemical compositions and microbial communities of salt-tolerant alfalfa silage. Salt-tolerant alfalfa was ensiled with no additive control, and cellulase for 30 and 60 to 90 days. In this study, the dry matter (DM) content of the raw material was 29.9% DM, and the crude protein (CP) content of the alfalfa was 21.9% CP. Results: After 30 days of fermentation, the DM content with the cellulase treatment was reduced by 3.6%, and the CP content was reduced by 12.7%. After 60 days of fermentation, compared with alfalfa raw material, the DM content in the control group (CK) was reduced by 1%, the CP content was reduced by 9.5%, and the WSC (water-soluble carbohydrates) content was reduced by 22.6%. With the cellulase, the lactic acid content of the 30- and 60-day silages was 2.66% DM and 3.48% DM. The content of Firmicutes in salinized alfalfa raw material was less than 0.1% of the total bacterial content. Before and after ensiling, the microbes had similar composition at the phylum level, and were composed of Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. The abundance of Pantoea was dominant in fresh alfalfa. In the absence of additives, after 30 days and 60 days of silage, the dominant lactic acid bacteria species became Lactococcus and Enterococcus. Conclusions: The results showed that LAB (Lactobacillus, Lactococcus, Enterococcus, and Pediococcus) played a major role in the fermentation of saline alfalfa silage. It also can better preserve the nutrients of saline alfalfa silage. The fermentation time would also change the microbial community of silage fermentation.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 518
Author(s):  
Vanessa P. Silva ◽  
Odilon G. Pereira ◽  
Eliana S. Leandro ◽  
Rosinea A. Paula ◽  
Mariele C. N. Agarussi ◽  
...  

The first part of the study aimed to isolate, characterize, and identify wild lactic acid bacteria (LAB) strains from alfalfa silage produced in a tropical area. LAB strains were isolated from alfalfa silage ensiled for 1, 3, 7, 14, 28, and 56 days (d) and were identified by sequencing the 16S rRNA gene. The second part aimed to investigate the effects of wild LAB strains on the nutritive and fermentative characteristics of alfalfa silage. This trial was conducted according to a completely randomized design in a 4 × 2 factorial scheme [four inoculants (I) × two harvests (H)], (n = 4). The inoculants were: (1) no inoculant (CTRL), (2) Lactobacillus pentosus (AV 14.17); (3) L. pentosus + Lactobacillus brevis + Pediococcus acidilactici (Combo); and (4) commercial inoculant (CI). Alfalfa forage (7 kg) was ensiled in 10 L buckets and opened after 90 d. Seventy-seven strains were isolated. Pediococcus, Lactobacillus, and Weissella represented 52.0, 24.7, and 20.8% of the isolates, respectively. For the first harvest, Combo, CI, and all inoculated silages showed lower acid detergent fiber ADF, neutral detergent fiber (NDF), and ammonia nitrogen (NH3-N), respectively. Silage fermented with AV14.17 presented greater residual water-soluble carbohydrate (WSC) in the second harvest and showed the lowest pH in both harvests. AV14.17 strain has potential as an inoculant for alfalfa silage production.


2011 ◽  
Vol 236-238 ◽  
pp. 305-308
Author(s):  
Jian Guo Zhang ◽  
Qin Hua Liu ◽  
Fu Yu Yang

To investigate the nutritive and ensiling characteristics of sweet corn processing by-products, the chemical compositions of corn bracts and cobs were analyzed and the effects of wilting and additives on the fermentation quality and aerobic stability were measured. The research results showed: Corn bracts and cobs had low fiber content and high nitrogen free extract content (> 61% DM),with high nutritive value; Corn bracts and cobs were of high water soluble carbohydrate contents (> 10% DM), low buffering capacity (< 150 mE/kg DM), more lactic acid bacteria (> 107cfu/g FM), they might be well preserved without any treatments, but their aerobic stability was poor; Barn and lactic acid bacteria addition had few effect on the fermentation except for reducing butyric acid content, wilting tended to increase lactic acid content and reduce the contents of volatile fatty acids.


2014 ◽  
Vol 54 (2) ◽  
pp. 165
Author(s):  
H. Mohammadzadeh ◽  
M. Khorvash ◽  
G. R. Ghorbani

A multi-species lactic acid bacterial inoculant (Lactisil maize, LM) was applied to whole-crop corn at different maturities in laboratory silos, to evaluate its effects on biochemical characteristics and aerobic stability. The corn crop was harvested at hard dough (HD, 253.1 g/DM kg), one-third milkline (ML, 293.7 g/DM kg) and one-third milkline with a killing frost (MLF, 297.6 g/DM kg). Crops were chopped to a 2.5-cm theoretical cut length, subsampled and treated with two levels of inoculant (LB1 = 1.5 × 105 cfu/g forage, LB2 = 3 × 105 cfu/g forage) or untreated (WO). The chemical composition of MLF crops was very similar to that of ML crops. However, lower (P < 0.01) numbers of lactic acid bacteria and higher numbers of yeast were enumerated in MLF than in ML crops. Higher percentages of DM and neutral detergent fibre and higher pH, but lower (P < 0.01) concentrations of water soluble carbohydrate and crude protein were measured in ML and MLF crops than in HD crops. Application of the inoculant increased (P < 0.01) concentrations of volatile fatty acids, neutral detergent fibre and acid detergent fibre in silages. Lactic acid concentration increased (P < 0.01) in HD treatments with an increasing level of inoculant. In contrast, the highest (P < 0.01) lactic acid concentration was measured in LB1 treatment compared with WO and LB2 in ML and MLF silages. Silages prepared from ML and MLF crops had higher (P < 0.01) lactic and acetic acid concentrations but lower (P < 0.01) butyric acid concentrations than did those prepared from HD. The pH in LB1 and LB2 silages was higher (P < 0.01) than that measured in WO silages. Aerobic stability was not influenced by inoculant treatment but low-DM silages were more (P < 0.01) resistant to spoilage. Frost-killed corn crops had a good potential to produce well fermented silage. Using LM resulted in silages with slightly higher fermentation products but it failed to improve aerobic stability of silage after 120 days of ensiling. These results indicated that inoculation of corn crops with LM for a short-duration ensilage period cannot enhance aerobic stability of silages due to insufficient acetic acid production from lactic acid conversion.


2021 ◽  
Vol 9 (2) ◽  
pp. 420
Author(s):  
Hong Yang ◽  
Bing Wang ◽  
Qing Zhang ◽  
Hui Cheng ◽  
Zhu Yu

The use of the fermented total mixed ration (FTMR) is a promising approach for the preservation of homogeneous feed, but changes during fermentation and links with the bacterial community of FTMR are not fully understood. This study investigated the effects of adding oat silage (OS) to the fermented total mixed ration (FTMR) in terms of fermentation, chemical composition, and the bacterial community. The fermentation quality of FTMR with 22% OS was greatly improved, as demonstrated by decreases in the butyric acid concentration, a lower lactic acid/acetic acid ratio, a larger population of lactic acid bacteria (LAB), and quicker spoilage yeast death. Further examination of the effects of various ensiling days on nutritive values showed stable crude protein and nonprotein nitrogen (NPN) contents. The concentrations of acetic acid, propionic acid, and ammonia–nitrogen (NH3–N) were increased following all FTMR treatments after 15 d, while the concentration of water-soluble carbohydrates (WSC) was decreased. More heterofermentative LAB, such as Lentilactobacillus buchneri, Lentilactobacillus brevis, and Companilactobacillus versmoldensis were found after adding 11% and 22% OS. Moreover, the addition of 22% OS caused a marked increase in both bacterial richness and diversity, dominated by the Lactobacillus genus complex. Among species of the Lactobacillus genus complex, the occurrence of Loigolactobacillus coryniformis was positively correlated with lactic acid, NPN, and NH3–N concentrations, suggesting its potential role in altering the fermentation profiles.


Sign in / Sign up

Export Citation Format

Share Document