Substituting chemical fertilizer nitrogen with organic manure and comparing their nitrogen use efficiency and winter wheat yield

2020 ◽  
Vol 158 (4) ◽  
pp. 262-268
Author(s):  
Y. J. Yang ◽  
T. Lei ◽  
W. Du ◽  
C. L. Liang ◽  
H. D. Li ◽  
...  

AbstractA 2-year fertilization experiment was conducted to study the effect of different ratios of organic (pig) manure on wheat yield and nitrogen use efficiency (NUE). The four treatments were no nitrogen (N) (CK); 100% chemical fertilizer N (urea; T1); 70% chemical fertilizer N + 30% organic manure N (T2) and 50% chemical fertilizer N + 50% organic manure N (T3), with the same amount of applied nitrogen (120 kg/ha). The results showed the maximum grain yield (3049 kg/ha), crop nitrogen uptake (216 kg/ha), NUE (65.4%) and accumulated nitrate nitrogen (NO3−-N in 0–200 cm, 142 kg/ha) were observed in the T1 among all treatments in the first year. However, the largest grain yield (5074 kg/ha), crop nitrogen uptake (244 kg/ha) and NUE (82.5%) were under T2 treatment in the second year. Furthermore, T2 had the maximum NO3−-N content in 0–100 cm layer (116 kg/ha), especially 0–40 cm layer, and the lowest NO3−-N content in 100–200 cm (58.8 kg/ha). However, 50% organic manure N in T3 increased apparent nitrogen loss by 39.0% compared to that in T2. Therefore, 30% organic manure N application was more conducive for enhancing wheat yield and NUE and promoting environmental safety after 1-year fertilization time.

Author(s):  
B. Balaganesh ◽  
P. Malarvizhi ◽  
N. Chandra Sekaran ◽  
P. Jeyakumar ◽  
K. R. Latha ◽  
...  

Controlled release nitrogen fertilizers could be an excellent management approach for improving nitrogen fertilizer efficiency. The present study aimed to investigate the effect of coated urea fertilizers to increase nitrogen uptake and utilization of maize. The nitrogen use efficiency of maize from various biodegradable polymer-coated urea fertilizers, such as palm stearin coated urea (PSCU), pine oleoresin coated urea (POCU), and humic acid coated urea (HACU), was determined in a pot culture experiment conducted at the Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, during 2021. The coating materials have been coated on urea with different coating thicknesses, viz., PSCU - 5, 10, 15%, POCU – 2, 4, 6%, and HACU - 5, 10, 15%. Among all the treatments, T11: HACU 15% produced highest grain yield (72.0g plant-1) followed by T7: POCU 4% (69.7 g plant-1) and T4: PSCU 10% (69.0g plant-1). In terms of dry matter production, T10: PSCU 10% produced maximum dry matter (186.5g plant-1), followed by T11: HACU 15% (186.2 g plant-1), and T7: POCU 4% (185.3g plant-1). The nitrogen uptake by the maize plant was higher in T7: POCU 4 % (1.62g plant-1), followed by T11: HACU 15% (1.59 g plant-1) and T4: PSCU 10% (1.59g plant-1). Irrespective of treatments, the highest nitrogen utilization by the maize crop was found in T7: POCU 4% (73.9%) followed by T4: PSCU 10% (71.1%) and T11: HACU 15% (70.9%) treatments. When compared to uncoated urea fertilizer, all coated urea fertilizers outperformed uncoated urea fertilizer in terms of grain yield, dry matter accumulation, and nitrogen uptake. To improve the nitrogen use efficiency, coated urea fertilizers prove to be a promising alternative to uncoated urea fertilizers.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 651 ◽  
Author(s):  
Anas Iqbal ◽  
Liang He ◽  
Aziz Khan ◽  
Shangqin Wei ◽  
Kashif Akhtar ◽  
...  

The current farming system is heavily reliant on chemical fertilizers, which negatively affect soil health, the environment, and crop productivity. Improving crop production on a sustainable basis is a challenging issue in the present agricultural system. To address this issue, we assumed that the combined use of organic manure and inorganic nitrogen (N) fertilizers can improve rice grain yield and soil properties without the expense of the environment. This study explores the combined effects of cattle manure (CM), poultry manure (PM), and chemical fertilizer (CF) on soil properties, rice growth, physiology, and grain yield and quality. Six treatments in the following combinations were included: T1—no N fertilizer; T2—100% CF; T3—60% CM + 40% CF; T4—30% CM + 70% CF; T5—60% PM + 40% CF; and T6—30% PM + 70% CF. Results showed that across the seasons, treatment T6 increased the net photosynthesis rate, total biomass, grain yield, and amylose content by 23%, 90%, 95%, and 10%, respectively, compared with control. This increment in net photosynthetic rate and growth was the result of 24%, 14%, 19%, and 20% higher total root length, root surface area, root volume, and root diameter, respectively. Improvements in these attributes further enhanced the grain yield and nitrogen use efficiency of rice. No significant difference between T4 and T6 was observed. The correlation analysis also confirmed that root morphological traits were positively correlated with grain yield, N uptake, and biomass accumulation. Similarly, improvement in grain yield and NUE was also associated with improved soil properties, i.e., bulk density, soil porosity, soil organic carbon, and total N under combined organic and inorganic N fertilizers treatment. Conclusively, the integration of 30% N from PM or CM with 70% N from CF (urea) is a promising option not only for higher grain yield and quality of rice but also for improved soil health. This study provides a sustainable nutrient management strategy to improve crop yield with high nutrient use efficiency.


2003 ◽  
Vol 51 (1) ◽  
pp. 53-59 ◽  
Author(s):  
S. Singh ◽  
Y. S. Shivay

A field experiment was carried out during the rainy season (June-October) of 1998 at the Research Farm of the Indian Agricultural Research Institute, New Delhi, India to study the effect of coating prilled urea with eco-friendly neem (Azadirachta indica A. Juss.) formulations in improving the efficiency of nitrogen use in hybrid rice. The experiment was laid out in a split-plot design with three replications. Two rice cultivars, hybrid rice (NDHR-3) and Pusa Basmati-1, formed the main plots, with the levels of nitrogen (0, 60, 120 and 180 kg N ha-1) and various forms of urea at 120 kg N ha-1 in the sub-plots. The results obtained in this study showed that the rice hybrid NDHR-3 performed significantly better than the scented variety Pusa Basmati-1 for almost all the agronomic traits tested (growth, yield attributes, grain and straw yields, nitrogen uptake and apparent N recovery) The advantage of grain yield in hybrid NDHR-3 was nearly 16 q/ha over Pusa Basmati-1. Increasing levels of nitrogen significantly increased the number of effective tillers hill-1, panicle length, panicle weight, grain and straw yields and nitrogen uptake, thereby revealing a significant decline in agronomic nitrogen use efficiency (NUE). Among the sources of N, Pusa Neem Golden Urea proved to be significantly superior to other sources with regards to panicle length, grain yield, N uptake, agronomic nitrogen use efficiency and apparent N recovery (%), indicating that coating urea with neem formulations not only increased the grain yield, NUE and apparent N recovery, but also helped to reduce the environmental hazards associated with the use of large amounts of urea.


2019 ◽  
Vol 111 (6) ◽  
pp. 3048-3056 ◽  
Author(s):  
Hua Guo ◽  
Zhongwei Tian ◽  
Shuzhen Sun ◽  
Yu Li ◽  
Dong Jiang ◽  
...  

2020 ◽  
Vol 12 (5) ◽  
pp. 1735 ◽  
Author(s):  
Aixia Xu ◽  
Lingling Li ◽  
Junhong Xie ◽  
Xingzheng Wang ◽  
Jeffrey A. Coulter ◽  
...  

Nitrogen (N) fertilizer plays an important role in wheat yield, but N application rates vary greatly, and there is a lack of data to quantify the residual effects of N fertilization on soil N availability. A 17-yr experiment was conducted in a semiarid area of the Loess Plateau of China to assess the effects of N fertilization on spring wheat (Triticum aestivum L.) grain yield, N uptake, N utilization efficiency, and residual soil nitrate. Treatments included a non-N-fertilized control and annual application of 52.5, 105.0, 157.5, and 210.0 kg N ha−1 in the first two years (2003 and 2004). In the third year (2005), the four main plots with N fertilizer application were split. In one subplot, N fertilization was continued as mentioned previously, while in the other subplot, N fertilization was stopped. The concentration of NO3-N in the 0–110 cm depth soil layers was significantly affected by N application, with higher N rates associated with greater soil NO3-N concentration. With the annual application of N over 17 years, residual soil NO3-N concentration in the 100–200 cm soil layer in the last study year was significantly greater than that in the non-N-fertilized control and was increased with rate of N application. There was a significant positive relationship of soil NO3-N in the 0–50 cm and 50–110 cm soil layers at wheat sowing with wheat grain N content and yield. Wheat grain yield in the third year (2005) was significantly, i.e., 22.57–59.53%, greater than the unfertilized treatment after the N application was stopped. Nitrogen use efficiency decreased in response to each increment of added N fertilizer, and was directly related to N harvest index and grain yield. Therefore, greater utilization of residual soil N through appropriate N fertilizer rates could enhance nitrogen use efficiency while reducing the cost of crop production and risk of N losses to the environment. For these concerns, optimum N fertilizer application rate for spring wheat in semiarid Loess Plateau is about 105 kg N ha−1, which is below the threshold value of 170 kg N ha−1 per year as defined by most EU countries.


2017 ◽  
Vol 184 ◽  
pp. 191-200 ◽  
Author(s):  
Junfeng Pan ◽  
Yanzhuo Liu ◽  
Xuhua Zhong ◽  
Rubenito M. Lampayan ◽  
Grant R. Singleton ◽  
...  

Author(s):  
Nihal Kayan ◽  
Nazife Gözde Ayter Arpacıoglu ◽  
Imren Kutlu ◽  
Mehmet Sait Adak

This research was conducted between 2011 and 2015 at research field of Faculty of Agriculture, Eskişehir Osmangazi University for evaluating two tillage methods (conventional and reduced), three crop rotations (wheat-wheat; wheat-fallow; wheat-chickpea) and four N levels (0, 50, 100, 150 kg ha-1). The experimental design was split-split plot with three replicates. Tillage methods were in main plots, crop rotations in subplots and N levels in sub-sub plots. The N concentration of grain and straw harvested from aboveground plant organs was separately determined using by the Kjeldahl digestion method after the plant samples were ground. Then, grain protein content, nitrogen use efficiency (NUE), nitrogen uptake efficiency (NUPE), nitrogen utilization efficiency (NUTE) were calculated. According to results, effects of tillage methods on NUE were unclear. Conventional tillage methods resulted in higher NUPE than reduced tillage in the last three years of the experiment. The NUTE was higher in reduced tillage than conventional in 2011-2012 and 2014-2015. The effects of tillage methods on grain yield were different due to the climatic conditions. Wheat-chickpea rotation had the better results for examined traits in this research. Increasing nitrogen doses increased grain and plant protein rate, however it decreased NUE and NUPE. The effects of nitrogen doses on NUTE were ambiguous. Nitrogen use efficiency and NUPE is traits that can be differed according to changeable grain yield depend on environmental conditions. Therefore, the experiments should be conducted for more than four years for revealed absolute effects both soil tillage method and nitrogen fertilization.


Sign in / Sign up

Export Citation Format

Share Document