scholarly journals Optimal areas and climate change effects on dragon fruit cultivation in Mesoamerica – CORRIGENDUM

Author(s):  
Victoria Sosa ◽  
Roger Guevara ◽  
Brandon E. Gutiérrez–Rodríguez ◽  
Catalina Ruiz–Domínguez
Author(s):  
Victoria Sosa ◽  
Roger Guevara ◽  
Brandon E. Gutiérrez-Rodríguez ◽  
Catalina Ruiz-Domínguez

Abstract Climbing cacti with edible fruits have been proposed as new dryland fruit crops because their high water-use efficiency reduces water requirement. One lineage of climbers in the cactus family, the Hylocereus group of Selenicereus, includes several species that produce edible fruits and is currently cultivated around the world. Fruits are known as pitahayas, pitayas or dragon fruit. Here, by means of ecological niche-based modelling and analytical hierarchical modelling, the optimal areas for cultivating the three main species of this group in Mesoamerica – Selenicereus costaricensis, Selenicereus ocamponis and Selenicereus undatus – are identified. Data on distribution, physiological requirement and host preferences are taken into account to carry out ecological modelling for current and future scenarios of climate and determine its impact on cultivation. Two MIROC climatic future models, one optimistic (ssp216) and a pessimistic (ssp585) were selected and 554 records from Mexico and Central America were gathered. For all three species, temperature and precipitation seasonality, and solar radiation were the most significant variables in the niche modelling. In addition, for S. undatus the most important hosts, three species of mesquite legume trees were significant to forecast suitable areas for planting. Large areas on the Pacific side from Sinaloa to Costa Rica were predicted as favourable for cultivating the studied three species. Future scenarios of climate change predicted increase of suitable areas for two species and in particular for S. undatus the increment was the largest. Therefore, dragon fruits are corroborated as promising fruits in view of climate change.


2016 ◽  
Vol 39 ◽  
pp. 89-92 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Loris Colombo ◽  
Gabriele Oberto ◽  
Ivana La Licata

2012 ◽  
Author(s):  
Ronald Filadelfo ◽  
Jonathon Mintz ◽  
Daniel Carvell ◽  
Alan Marcus

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1819
Author(s):  
Eleni S. Bekri ◽  
Polychronis Economou ◽  
Panayotis C. Yannopoulos ◽  
Alexander C. Demetracopoulos

Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus, in water resources management plans, storage reservoirs play a vital role in safeguarding drinking, irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects, such as fragmentation of water flow and sediment transport, are considered in decision-making, for achieving an optimal balance between human needs and healthy riverine and coastal ecosystems. Currently, operation of existing reservoirs is challenged by increasing water demand, climate change effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity. This paper proposes a methodological framework to reassess supply capacity and management resilience for an existing reservoir under these challenges. Future projections are derived by plausible climate scenarios and global climate models and by stochastic simulation of historic data. An alternative basic reservoir management scenario with a very low exceedance probability is derived. Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable total benefit from water allocated to the various water uses is estimated to assist decision makers in examining the tradeoffs between the probable additional benefit and risk of exceedance.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1091
Author(s):  
Vanessa Mendoza-Grimón ◽  
Regla Amorós ◽  
Juan Ramón Fernández-Vera ◽  
Jose Manuel Hernádez-Moreno ◽  
María del Pino Palacios-Díaz

Cape Verde is a semiarid country where lack of rainfall exacerbates the scarce resources available for livestock which, therefore, make it very vulnerable to climate change. By providing reclaimed water (RW) for irrigation, it is possible to decrease forage importation. Subsurface drip irrigation (SDI) improves health security by preventing contact between water and harvested plants. Sorghum is a water-efficient crop that provides good nutritional value. The aim of this experiment was to study the nutrient and fiber contents of the Sorghum Payenne variety using subsurface (T1) and surface (T2) drip irrigation by RW vs. conventional water (T3) and plant maturity to assure the feasibility of water reuse to produce forage. Ntot–Ptot–Ca–Mg and Na were significantly higher in the RW plants than in the conventional water ones. Ntot–Ptot–K and Fe contents significantly lowered, while Ca–Na and Mn significantly rose as plant maturity increased. All the fiber values meet the Nos. 2 and 3 quality standards, and the Prime and No. 1 for NDF and ADF, respectively. The obtained good forage quality let to avoid the competence of conventional water and to reuse nutrients added by RW. If generalized, this solution would reduce forage importation by improving food sovereignty and farmers’ profitability, and would enhance resilience against climate change effects.


Author(s):  
Jerelle A. Jesse ◽  
M. Victoria Agnew ◽  
Kohma Arai ◽  
C. Taylor Armstrong ◽  
Shannon M. Hood ◽  
...  

AbstractDiseases are important drivers of population and ecosystem dynamics. This review synthesizes the effects of infectious diseases on the population dynamics of nine species of marine organisms in the Chesapeake Bay. Diseases generally caused increases in mortality and decreases in growth and reproduction. Effects of diseases on eastern oyster (Crassostrea virginica) appear to be low in the 2000s compared to effects in the 1980s–1990s. However, the effects of disease were not well monitored for most of the diseases in marine organisms of the Chesapeake Bay, and few studies considered effects on growth and reproduction. Climate change and other anthropogenic effects are expected to alter host-pathogen dynamics, with diseases of some species expected to worsen under predicted future conditions (e.g., increased temperature). Additional study of disease prevalence, drivers of disease, and effects on population dynamics could improve fisheries management and forecasting of climate change effects on marine organisms in the Chesapeake Bay.


Sign in / Sign up

Export Citation Format

Share Document