Effect of sunflower-seed oil or linseed oil on milk fatty acid secretion and lipogenic gene expression in goats fed hay-based diets

2009 ◽  
Vol 76 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Laurence Bernard ◽  
Christine Leroux ◽  
Yannick Faulconnier ◽  
Denys Durand ◽  
Kevin J Shingfield ◽  
...  

Plant oils in the diet are known to alter milk fat composition owing to changes in the supply of fatty acid precursors and/or activity of lipogenic enzymes in the mammary gland. Thirteen mid-lactating Alpine goats were used in a 3×3 Latin square design with 28-d periods to evaluate possible mechanisms regulating milk fat synthesis and fatty acid composition on grass hay-based diets containing none (H) or 55 g/kg diet dry matter of sunflower-seed oil (HSO) or linseed oil (HLO). Inclusion of oils in the diet had no effect on milk yield but enhanced (P<0·05) milk fat secretion. Compared with the control, HLO and HSO decreased (P<0·05) C10–C16 secretion and increased (P<0·05) C18 output in milk, responses that were accompanied by reductions in milk fat cis-9 14:1/14:0, cis-9 18:1/18:0 and cis-9, trans-11 18:2/cis-9 18:1 concentration ratios. Plant oil supplements decreased (P<0·05) mammary stearoyl-CoA desaturase (SCD) activity but had no effect on SCD mRNA. Treatments had no effect on glucose-6-phosphate dehydrogenase, malic enzyme and glycerol-3-phosphate dehydrogenase activity, or mRNA abundance and/or activity of lipoprotein lipase, acetyl-CoA carboxylase and fatty acid synthase in mammary, hepatic or adipose tissue. The results provided little support for milk fatty acid secretion responses to HLO and HSO being mediated via changes in mammary, hepatic or adipose mRNA abundance or in the activity of key lipogenic enzymes. In conclusion, plant oils in the diet enhance milk fat synthesis, alter milk fatty acid composition and specifically inhibit mammary SCD activity in the goat. Furthermore, the results suggest that the regulation of mammary lipogenesis in response to plant oils appears related to factors other than altered mammary gene expression or potential lipogenic enzyme activity.

2011 ◽  
Vol 56 (No. 4) ◽  
pp. 181-191 ◽  
Author(s):  
X.J. Dai ◽  
C. Wang ◽  
Q. Zhu

The objective of the study was to investigate the effects of supplementing different plant oils to the basal diet on milk yield and milk composition in mid-lactating dairy cows. Forty Chinese Holstein dairy cows averaging 120 days in milk (DIM) at the start of the experiment (body weight = 580 &plusmn; 18.2 kg; milk yield = 33.0 &plusmn; 2.00 kg/day) were used in a completely randomized block design. The animals were assigned to four dietary treatments according to DIM and milk yield, and supplemented with no oil (control), 2% rapeseed oil (RSO), 2% peanut oil (PNO) and 2% sunflower seed oil (SFO). Milk yield and milk composition (fat, protein, and lactose) were measured. Dry matter intake was similar in all treatments. The supplementation of plant oil increased milk yield, with the highest milk yield in RSO group. Percentages of milk fat, lactose, solids-not-fat and SCC were not affected by treatments except for an increase in milk protein content in oil supplemented groups. The fatty acid (FA) profile of milk was altered by fat supplementation. Feeding plant oils reduced the proportion of both short-chain (C4:0 to C12:0) and medium-chain (C14:0 to C16:1) fatty acids, and increased the proportion of long-chain (&ge; C18:0) fatty acids in milk fat. The inclusion of vegetable oils increased the concentration of cis-9, trans-11 CLA. The cis-9, trans-11 CLA content in milk fat was higher from RSO to PNO and SFO was higher than the control. The TVA concentration was higher in the SFO diet, followed by PNO, RSO, and control diets. The results of this study indicated that linoleic acid was more effective in enhancing contents of TVA and CLA in milk fat than oleic acid. No significant effects of week and treatment by week interaction were found out in this study. Overall, feeding plant oils increased monounsaturated and polyunsaturated fatty acids and decreased saturated fatty acids in milk fat. In conclusion, dietary supplementation of RSO increases milk yield the most, while SFO enhances the cis-9, trans-11 CLA content in milk fat more effectively.


2011 ◽  
Vol 107 (8) ◽  
pp. 1147-1159 ◽  
Author(s):  
L. Bernard ◽  
C. Leroux ◽  
J. Rouel ◽  
M. Bonnet ◽  
Y. Chilliard

The potential benefits on human health have prompted an interest in developing nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids (FA) in ruminant milk. The impact of the level and type of starchy concentrate added to diets supplemented with sunflower-seed oil on caprine milk FA composition and on mammary, omental and perirenal adipose, and liver lipid metabolism was examined in fourteen Alpine goats in a replicated 3 × 3 Latin square with 21 d experimental periods. Treatments were a grass hay-based diet with a high level of forage (F) or a high level of concentrate with either maize grain (CM) or flattened wheat (CW) as source of starch and supplemented with 130 g/d sunflower-seed oil. Milk yield was enhanced (P < 0·01) and milk fat content was decreased on the CM and CW diets compared with the F diet, resulting in similar milk fat secretion. Both high-concentrate diets increased (P < 0·05) milk yield of 10 : 0-16 : 0 and decreased trans-9,11-18 : 1 and cis-9, trans-11-18 : 2. The CW diet decreased (P < 0·05) the output of Σ C18 and Σ cis-18 : 1 and increased (P < 0·05) the output of trans-10-18 : 1 in milk. The expression and/or activity of fourteen proteins involved in the major lipogenic pathways in mammary tissues and of lipogenic genes in adipose and liver tissues were similar among treatments. In conclusion, high starch concentrates alter milk FA yield via mechanisms independent of changes in mammary, liver or adipose tissue lipogenic gene expression. Furthermore, data provided indications that mammary lipogenic responses to starch-rich diets differ between caprine and bovine ruminants.


2018 ◽  
Vol 239 ◽  
pp. 55-65 ◽  
Author(s):  
Esperanza Prieto-Manrique ◽  
Liliana Mahecha-Ledesma ◽  
Julio E. Vargas-Sánchez ◽  
Joaquín Angulo-Arizala

2008 ◽  
Vol 101 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Laurence Bernard ◽  
Kevin J. Shingfield ◽  
Jacques Rouel ◽  
Anne Ferlay ◽  
Yves Chilliard

Based on the potential benefits to long-term human health there is interest in developing sustainable nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids in ruminant milk. The impact of plant oil supplements to diets containing different forages on caprine milk fatty acid composition was examined in two experiments using twenty-seven Alpine goats in replicated 3 × 3 Latin squares with 28 d experimental periods. Treatments comprised of no oil (control) or 130 g/d of sunflower-seed oil (SO) or linseed oil (LO) supplements added to diets based on grass hay (H; experiment 1) or maize silage (M; experiment 2). Milk fat content was enhanced (P < 0·01) on HSO, HLO and MLO compared with the corresponding H or M control diets, resulting in 17, 15 and 14 % increases in milk fat secretion, respectively. For both experiments, plant oils decreased (P < 0·05) milk 10 : 0–16 : 0 and odd- and branched-chain fatty acid content and increased 18 : 0,trans-Δ6–9,11–14,16-18 : 1 (and their corresponding Δ-9 desaturase products),trans-7,trans-9-conjugated linoleic acid (CLA),trans-9,trans-11-CLA andtrans-8,cis-10-CLA concentrations. Alterations in the distribution ofcis-18 : 1,trans-18 : 1, -18 : 2 and CLA isomers in milk fat were related to plant oil composition and forage in the diet. In conclusion, plant oils represent an effective strategy for altering the fatty acid composition of caprine milk, with evidence that the basal diet is an important determinant of ruminal unsaturated fatty acid metabolism in the goat.


2002 ◽  
Vol 69 (4) ◽  
pp. 521-531 ◽  
Author(s):  
CHARAF E. AHNADI ◽  
NAOMI BESWICK ◽  
LOUIS DELBECCHI ◽  
JOHN J. KENNELLY ◽  
PIERRE LACASSE

Sixteen Holstein cows in mid-lactation were used to determine whether alterations of mammary fatty acid metabolism are responsible for the milk fat depression associated with consumption of fish oil. Cows were given a total mixed ration with no added fish oil (control), unprotected fish oil (3.7% of dry matter), or glutaraldehyde-protected microcapsules of fish oil (1.5% or 3.0% of dry matter) for 4 weeks. Milk samples were taken once a week and a mammary biopsy was taken from a rear quarter at the end of the treatment period. Milk fat content was lower in cows given unprotected fish oil (26.0 g/kg), 1.5% protected fish oil (24.6 g/kg) and 3% protected fish oil (20.4 g/kg) than in cows fed the control diet (36.0 g/kg). This was mainly due to a decrease in the synthesis of short-chain fatty acids. Consumption of protected fish oil decreased the abundance of lipogenic enzymes mRNA in the mammary gland. Acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase mRNAs for cows given 3% protected fish oil averaged only 30%, 25% and 25% of control values, respectively. Dietary addition of unprotected fish oil slightly decreased mRNA abundance of these enzymes but markedly reduced the amount of lipoprotein lipase mRNA. Milk fat content was significantly correlated with gene expression of acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase but not lipoprotein lipase. These results suggest that fish oil reduces milk fat percentage by inhibiting gene expression of mammary lipogenic enzymes.


2006 ◽  
Vol 82 (4) ◽  
pp. 479-492 ◽  
Author(s):  
A. Roy ◽  
A. Ferlay ◽  
K. J. Shingfield ◽  
Y. Chilliard

AbstractIt is well established that plant oils reduce milk saturated fatty acid content and enhance concentrations of conjugated linoleic acid (CLA) and trans C18:1in milk fat, but there is increasing evidence to suggest that milk fat CLA responses are often transient and decline over time. It is probable that time dependent adaptations in ruminal biohydrogenation and changes in milk fatty acid composition to lipid supplements are, at least in part, related to the composition of the basal diet. To test this hypothesis, 18 Holstein cows were used in a continuous randomized block design to examine changes in milk fatty acid composition over time in response to plant oils included in diets of variable composition. Cows were randomly allocated to one of three basal diets containing (g/kg dry matter (DM)) maize silage (267) and concentrates (733) (diet C); maize silage (332), grass hay (148) and concentrates (520) (diet M), or grass hay (642) and concentrates (358) (diet H). Basal rations were offered for 21 days, after which diets were supplemented with 50 g sunflower per kg DM (diets C-S and M-S) or 50 g linseed oil per kg DM (diet H-L). Oils were included in all rations incrementally over a five day period (days 0–4), and responses to 50 g/kg DM of the respective oils were evaluated for 17 days (days 4 to 20). Milk fatty acid composition was intensively monitored from days −2 to 20. In contrast to the H-L diet, both C-S and M-S treatments decreased (P<0·05) DM intake, milk fat content and yield, while the C-S diet also reduced (P<0·05) milk yield. Milk fatcis-9,trans-11 CLA andtrans-11 C18:1contents were enhanced on the C-S and M-S treatments but the increases were transient reaching the highest concentrations between days 4 and 6 (cis-9,trans-11 CLA: 1·94 and 2·18 g per 100 g total fatty acids;trans-11 C18:1: 4·88 and 6·23 g per 100 g total fatty acids, respectively) but declined thereafter. In marked contrast, concentrations ofcis-9,trans-11 CLA andtrans-11 C18:1in milk from the H-L diet increased gradually over time, responses that were maintained until the end of the experiment (2·89 and 7·49 g per 100 g total fatty acids, respectively).Decreases in milk fatcis-9,trans-11 CLA andtrans-11 C18:1after day 6 on the M-S and C-S diets were associated with concomitant increases in milk fattrans-10 C18:1content reaching 7·22 and 18·62 g per 100 g total fatty acids on day 18, respectively, whereas concentrations oftrans-10 C18:1in milk on the H-L diet remained low throughout the experiment (0·70 g per 100 g total fatty acids on day 18). Furthermore, milk fattrans-11,cis-13 CLA,trans-11,trans-13 CLA andtrans-12,trans-14 CLA contents were all enhanced on the H-L diet, while the M-S and C-S diets increasedtrans-8,cis-10 CLA,trans-10,cis-12 CLA andtrans-9,cis-11 CLA concentrations. Across all diets, decreases in milk fat content were associated with increases in milktrans-10 C18:1,trans-10,cis-12 andtrans-9,cis-11 CLA concentrations (r2=0·93, 0·88 and 0·89, respectively). In conclusion, the relative abundance oftransC18:1and CLA isomers in milk fat were dependent on the composition of the basal diet, type of plant oil and duration of lipid supplementation, highlighting the challenges in developing nutritional strategies for the production of milk highly enriched with CLA over an extended period of time.


Sign in / Sign up

Export Citation Format

Share Document