Milk concentration of the mammalian lignan enterolactone, milk production, milk fatty acid profile, and digestibility in dairy cows fed diets containing whole flaxseed or flaxseed meal

2009 ◽  
Vol 76 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Hélène V Petit ◽  
Nathalie Gagnon ◽  
Priyadarshini S Mir ◽  
Rong Cao ◽  
Steve Cui

A total of 24 lactating Holstein cows averaging 620 (se=29) kg of body weight were allotted at week 17 of lactation to eight groups of three cows blocked for similar days in milk to determine the effects of feeding two sources of the plant lignan precursor secoisolariciresinol diglucoside, whole flaxseed and flaxseed meal, on concentrations of the mammalian lignans (enterodiol and enterolactone) in milk. Feed intake, digestion, milk production and milk composition were also determined to compare the use of whole flaxseed and flaxseed meal for milk production. Cows within each block were assigned to one of the three isonitrogenous and isoenergetic total mixed diets: no flaxseed product; 10% flaxseed meal; or 10% whole flaxseed in the dry matter. The experiment was carried out from week 17 to week 21 of lactation and diets were fed at ad-libitum intake. The mammalian lignan, enterodiol, was not detected in the milk of cows. Cows fed whole flaxseed and flaxseed meal had greater concentrations of enterolactone in milk than those fed the control diet. Feed intake, milk production and milk composition were also similar for all diets, indicating that both flaxseed meal and whole flaxseed are suitable feed ingredients for milk production of cows in mid lactation. The results provide new information on the conversion of plant secoisolariciresinol diglucoside from two flaxseed products into mammalian lignans in dairy cows.

1998 ◽  
Vol 1998 ◽  
pp. 146-146 ◽  
Author(s):  
R. H. Phipps ◽  
J.D. Sutton ◽  
A. K. Jones

Interest in the use of whole crop cereals as a complementary forage for dairy cows has developed in Europe over the last fifteen years. Initial studies in the UK concluded that near maximum dry matter (DM) yield/ha of whole crop wheat (WCW) occurred in late July/early August when crops contained at least 500 g/kg DM. However, it was noted that when these crops were ensiled they tended to be aerobically unstable. To minimise this problem it was recommended that these crops were preserved with urea rather than being ensiled. Early studies with dairy cows demonstrated that the use of both urea-treated and low DM fermented WCW increased forage intake and milk yield but effects on milk composition were inconsistent (Leaver and Hill, 1992, Phipps et al., 1995). Concern has been expressed that the use of urea in crop preservation was environmentally unacceptable and that high DM fermented WCW offered a possible alternative, which would provide high DM yields/ha of a starch-rich crop. The objective of the current study was to examine the effect of crop maturity on feed intake and milk production of dairy cows. An additional treatment was included to examine the effectiveness of an additive containing L. buchneri designed to improve aerobic stability.


2007 ◽  
Vol 87 (4) ◽  
pp. 591-600 ◽  
Author(s):  
H. V. Petit ◽  
C. Benchaar

A total of 153 lactating Holstein cows averaging 695 kg body weight (standard error = 11) were allotted 6 wk before the expected date of parturition to 51 groups of three cows blocked for similar calving dates to determine the effects of feeding different profiles of fatty acids from 6 wk before calving on feed intake, milk production and composition, conception rate, and embryo mortality in the subsequent lactation. Cows within each block were assigned to one of the three isoenergetic total mixed diets based on either whole flaxseed (FLA), Megalac® (MEG) or micronized soybeans (SOY). Diets were fed for ad libitum intake from 6 wk before calving to day 50 of pregnancy for pregnant cows, or 120 d postpartum for those not diagnosed pregnant after artificial insemination (AI). Diet had no effect on prepartum dry matter intake but postpartum intake was 9% higher for cows fed FLA than for those fed MEG or SOY. Milk production and fat concentration were similar among treatments. Conception rate at first AI was higher for cows fed FLA (54.3%) than for those fed SOY (26.9%). Conception rate at first AI was similar for cows fed FLA and MEG and it was similar for those fed MEG and SOY. Cows fed MEG tended to have higher embryo mortality than those fed FLA (41.7 vs. 10.5%, P = 0.06) and SOY (41.7 vs. 0%, P = 0.08) at first AI and there was no difference among treatments at second AI. Total embryo mortality was similar for cows fed FLA and SOY but cows fed MEG had higher total embryo mortality than those fed SOY (35.3 vs. 9.1%) and there was a trend (P = 0.07) when MEG was compared with FLA (35.3 vs. 9.5%). These data suggest that feeding flaxseed during the prepartum period has little effect on production in the subsequent lactation but could improve fertility of dairy cows. Key words: Dairy, flaxseed, milk production, reproduction, fatty acids


2010 ◽  
Vol 90 (2) ◽  
pp. 115-127 ◽  
Author(s):  
H V Petit

Flaxseed contains approximately 55% of total fatty acids of the oil as ?-linolenic acid and is rich in lignans, which are strong antioxidants. Diets rich in omega-3 fatty acids and antioxidants are known to have beneficial effects on human health such as a decrease in the incidence of cancer, cardiovascular diseases, hypertension, and arthritis. Flaxseed could then be an interesting natural feed to consider for changing milk composition. Cyanogenic glycosides (linustatin and neolinustatin) are present in flaxseed, but the concentration of hydrocyanic acid is very low in milk and ruminal fluid of cows fed flaxseed products. In general, feeding up to 15% of the total dry matter as whole flaxseed has a limited effect on dry matter intake. Heat treatments such as micronization and extrusion have no effect on dry matter intake and the effect of formaldehyde treatment on feed intake is unclear. The effects of flaxseed supplementation on milk production of dairy cows in the early stage of lactation have been neutral. Diet supplementation with whole flaxseed has had no effect on milk yield and composition of dairy cows in the mid or late stages of lactation. Physical processing of flaxseed increased milk production although heat treatment did not. Results on the effect of flaxseed processing on overall milk fat concentration have been controversial, but heat and formaldehyde treatments had no effect. Flaxseed supplementation had no effect on milk fat and protein concentrations, and processing of flaxseed had little effect. The extent of change in the concentration of fatty acids in milk is generally proportional to the level of inclusion of flaxseed in the diet. In conclusion, feeding flaxseed does not affect milk production or composition in the large majority of studies, but its long-term effects on health of cows and productivity still need to be determined.Key words: Review, flax, dairy


1998 ◽  
Vol 1998 ◽  
pp. 146-146
Author(s):  
R. H. Phipps ◽  
J.D. Sutton ◽  
A. K. Jones

Interest in the use of whole crop cereals as a complementary forage for dairy cows has developed in Europe over the last fifteen years. Initial studies in the UK concluded that near maximum dry matter (DM) yield/ha of whole crop wheat (WCW) occurred in late July/early August when crops contained at least 500 g/kg DM. However, it was noted that when these crops were ensiled they tended to be aerobically unstable. To minimise this problem it was recommended that these crops were preserved with urea rather than being ensiled. Early studies with dairy cows demonstrated that the use of both urea-treated and low DM fermented WCW increased forage intake and milk yield but effects on milk composition were inconsistent (Leaver and Hill, 1992, Phipps et al., 1995). Concern has been expressed that the use of urea in crop preservation was environmentally unacceptable and that high DM fermented WCW offered a possible alternative, which would provide high DM yields/ha of a starch-rich crop. The objective of the current study was to examine the effect of crop maturity on feed intake and milk production of dairy cows. An additional treatment was included to examine the effectiveness of an additive containing L. buchneri designed to improve aerobic stability.


2009 ◽  
Vol 76 (4) ◽  
pp. 455-458 ◽  
Author(s):  
Nathalie Gagnon ◽  
Cristiano Côrtes ◽  
Hélène V Petit

Flaxseed meal (FM) is rich in the plant lignan secoisolariciresinol diglucoside (SDG) which is converted to the mammalian lignans enterodiol and enterolactone (EL) by ruminal microbiota. Feeding FM to dairy cows increases linearly EL concentration in milk but enterodiol is not detected. The objectives of the study were to determine the length of time to obtain peak EL concentration in the milk of dairy cows fed 20% FM and the length of time to return to EL baseline level in milk when cows are switched from high to low intake of flax SDG. A total of 12 multiparous lactating Holstein cows were assigned randomly to one of two feeding regimens: the control (CO) diet was fed for 6 weeks or the FM diet was fed from week 0 to 3 inclusive and then cows were switched to the control diet from week 3 to 6 inclusive. Milk samples were taken weekly for EL analysis. There was a significant interaction between feeding regimen and week for milk concentration of EL as a result of higher concentration of EL from week 1 to 3 for cows on the FM regimen compared with those on the CO regimen. Concentrations of milk EL on the FM regimen maintained uniform high levels from week 1 to 3 and they decreased significantly from week 3 to 4 when the CO diet was reintroduced in week 3. This study suggests that the conversion of SDG to the mammalian lignan EL and the transfer of EL to the mammary gland are well established after one week of feeding 20% FM in the diet of dairy cows and that milk concentration of EL returns to baseline level after one week of FM deprivation.


2001 ◽  
Vol 2001 ◽  
pp. 192-192
Author(s):  
R.E. Lawson ◽  
A.R. Moss ◽  
C. Rymer ◽  
J.S. Blake

Mansbridge (1995) reported that replacing ground wheat with a mix of ground wheat and maize grain increased milk protein concentration, which led the authors to speculate that increased inclusion of maize grain increased rumen by-pass starch. Indeed, de Visseret al(1990) reported that feeding less rapidly degradable starches has led to increased milk protein concentration.The objective of this study was to examine the effects of starch concentration and source on feed intake, milk yield and milk composition of dairy cows.


2015 ◽  
Vol 95 (2) ◽  
pp. 267-279 ◽  
Author(s):  
I. P. Acharya ◽  
D. J. Schingoethe ◽  
K. F. Kalscheur ◽  
D. P. Casper

Acharya I. P., Schingoethe D. J., Kalscheur K. F. and Casper D. P. 2015. Response of lactating dairy cows to dietary protein from canola meal or distillers’ grains on dry matter intake, milk production, milk composition, and amino acid status. Can. J. Anim. Sci. 95: 267–279. A study was conducted to determine the response of feeding two different crude protein (CP) concentrations [low protein (LP, 14.3% CP) and high protein (HP, 16.3% CP)] and sources of protein [canola meal (CM) and high-protein dried distillers’ grains (HPDDG)] on dry matter intake, milk production and composition, and amino acid (AA) status of high producing dairy cows. Sixteen Holstein cows were used in a replicated 4×4 Latin square having a 2×2 factorial arrangement of treatments. All diets contained 55% forage (50% alfalfa hay and 50% corn silage) and 45% concentrate. Diets were formulated to contain LP with CM, LP with HPDDG, HP with CM and HP with HPDDG. Experimental feeding periods were 4 wk with data collected during weeks 3 and 4 of each period. Dry matter intake (24.6 vs. 25.9 kg d−1 for LP and HP, respectively) was increased for cows fed the higher CP diets, milk yield was greater for cows fed HP diets (34.0 vs. 36.4 kg d−1), and milk fat percentage was greater for cows fed HP compared with LP, but were similar between dietary protein sources. Feed efficiency calculated as fat-corrected milk and energy-corrected milk was greater for cows fed HP than LP, but was similar between sources. Dietary metabolizable protein of CM diets was utilized more efficiently than from HPDDG diets for milk protein production. Mammary gland extraction efficiency of essential AA indicated that Met was the first limiting AA for CM-based diets while Lys was first limiting for HPDDG-based diets. In summary, canola meal and distillers’ grains are both good quality protein supplements for lactating cows.


1997 ◽  
Vol 64 (2) ◽  
pp. 181-195 ◽  
Author(s):  
FRANCIS ENJALBERT ◽  
MARIE CLAUDE NICOT ◽  
CORINE BAYOURTHE ◽  
MICHELE VERNAY ◽  
RAYMOND MONCOULON

Dairy cows fitted with ruminal, duodenal and ileal cannulas were utilized to investigate the effects of feeding with Ca soaps (CaS) of palm fatty acids (FA) and rapeseed FA. Diets compared were control diet based on maize silage and concentrate, and two diets with 40 g CaS of palm oil FA or rapeseed oil FA/kg diet, replacing part of the concentrates of the control diet. Total digestibilities of dry matter, fibre and fat, and ruminal fermentation were not significantly altered by giving CaS; the extent of ruminal biohydrogenation of total unsaturated C18 FA was significantly reduced by both CaS diets. Apparent intestinal digestibility of FA was not different among diets, although the amount of FA absorbed with the CaS diets was twice that with the control diet. No difference among diets was observed for milk production, or fat and protein contents. Giving CaS diets decreased the proportions of 4[ratio ]0 to 14[ratio ]0 FA in milk fat, and increased cis-18[ratio ]1n−9, compared with control diet. The rapeseed diet lowered the content of 16[ratio ]0, and increased the contents of 18[ratio ]0 and trans-18[ratio ]1n−7. CaS diets did not result in a marked increase of polyunsaturated FA content in milk fat. Butter from cows fed on the CaS diets contained more liquid fat at 6 and 14°C than butter from the cows fed on the control diet. Incorporating CaS, particularly those from rapeseed, in dairy cows' diets increased C18 FA in milk and improved butter spreadability.


2019 ◽  
Vol 59 (5) ◽  
pp. 891 ◽  
Author(s):  
P. J. Moate ◽  
S. R. O. Williams ◽  
M. H. Deighton ◽  
M. C. Hannah ◽  
B. E. Ribaux ◽  
...  

There has been little research that has quantified methane (CH4) yields when dairy cows consume diets containing wheat grain. Furthermore, although rumen-fistulated animals have been used in many experiments concerned with measuring CH4 emissions, no research has examined the effect of rumen fistulation on in vivo CH4 emissions and yield. This experiment examined the effects of including either wheat or corn grain in the diet and the effects of rumen fistulation on yields of milk and milk components, CH4 emissions, yields, and intensities. Eight rumen-fistulated and six non-fistulated Holstein dairy cows in late lactation were offered a wheat-based diet (WHT) and a corn-based diet (CRN) in a crossover design. For the WHT diet, cows were offered daily, 22.4 kg DM containing 45.5% lucerne hay, 8.9% canola meal, 0.5% mineral mix, 0.5% molasses powder and 44.6% rolled wheat. The CRN diet was similar to the WHT diet except that rolled corn replaced the wheat. There was no difference between the WHT and CRN diets on mean milk yields (27.8 vs 27.9 kg/day), but the WHT diet substantially reduced milk fat concentration (2.76 vs 4.23%) and milk fat yield (0.77 vs 1.18 kg/day). Methane emissions (218 vs 424 g/day), CH4 yield (11.1 vs 19.5 g/kg dry matter intake) and CH4 intensity (7.6 vs 15.7 g/kg milk) were all reduced ~45% by the WHT diet compared with the CRN diet. Rumen fistulation did not affect dry matter intake, milk production, milk composition or CH4 emissions, but decreased CH4 yield and intensity. Including wheat in the diet of dairy cows has the potential to be an effective strategy to reduce their greenhouse gas emissions. In addition, rumen fistulation was associated with a small reduction in CH4 yield and intensity, and this should be considered when using rumen-fistulated cows in research concerned with CH4 emissions.


Sign in / Sign up

Export Citation Format

Share Document