Effects of dietary calcium soaps of unsaturated fatty acids on digestion, milk composition and physical properties of butter

1997 ◽  
Vol 64 (2) ◽  
pp. 181-195 ◽  
Author(s):  
FRANCIS ENJALBERT ◽  
MARIE CLAUDE NICOT ◽  
CORINE BAYOURTHE ◽  
MICHELE VERNAY ◽  
RAYMOND MONCOULON

Dairy cows fitted with ruminal, duodenal and ileal cannulas were utilized to investigate the effects of feeding with Ca soaps (CaS) of palm fatty acids (FA) and rapeseed FA. Diets compared were control diet based on maize silage and concentrate, and two diets with 40 g CaS of palm oil FA or rapeseed oil FA/kg diet, replacing part of the concentrates of the control diet. Total digestibilities of dry matter, fibre and fat, and ruminal fermentation were not significantly altered by giving CaS; the extent of ruminal biohydrogenation of total unsaturated C18 FA was significantly reduced by both CaS diets. Apparent intestinal digestibility of FA was not different among diets, although the amount of FA absorbed with the CaS diets was twice that with the control diet. No difference among diets was observed for milk production, or fat and protein contents. Giving CaS diets decreased the proportions of 4[ratio ]0 to 14[ratio ]0 FA in milk fat, and increased cis-18[ratio ]1n−9, compared with control diet. The rapeseed diet lowered the content of 16[ratio ]0, and increased the contents of 18[ratio ]0 and trans-18[ratio ]1n−7. CaS diets did not result in a marked increase of polyunsaturated FA content in milk fat. Butter from cows fed on the CaS diets contained more liquid fat at 6 and 14°C than butter from the cows fed on the control diet. Incorporating CaS, particularly those from rapeseed, in dairy cows' diets increased C18 FA in milk and improved butter spreadability.

2010 ◽  
Vol 90 (2) ◽  
pp. 115-127 ◽  
Author(s):  
H V Petit

Flaxseed contains approximately 55% of total fatty acids of the oil as ?-linolenic acid and is rich in lignans, which are strong antioxidants. Diets rich in omega-3 fatty acids and antioxidants are known to have beneficial effects on human health such as a decrease in the incidence of cancer, cardiovascular diseases, hypertension, and arthritis. Flaxseed could then be an interesting natural feed to consider for changing milk composition. Cyanogenic glycosides (linustatin and neolinustatin) are present in flaxseed, but the concentration of hydrocyanic acid is very low in milk and ruminal fluid of cows fed flaxseed products. In general, feeding up to 15% of the total dry matter as whole flaxseed has a limited effect on dry matter intake. Heat treatments such as micronization and extrusion have no effect on dry matter intake and the effect of formaldehyde treatment on feed intake is unclear. The effects of flaxseed supplementation on milk production of dairy cows in the early stage of lactation have been neutral. Diet supplementation with whole flaxseed has had no effect on milk yield and composition of dairy cows in the mid or late stages of lactation. Physical processing of flaxseed increased milk production although heat treatment did not. Results on the effect of flaxseed processing on overall milk fat concentration have been controversial, but heat and formaldehyde treatments had no effect. Flaxseed supplementation had no effect on milk fat and protein concentrations, and processing of flaxseed had little effect. The extent of change in the concentration of fatty acids in milk is generally proportional to the level of inclusion of flaxseed in the diet. In conclusion, feeding flaxseed does not affect milk production or composition in the large majority of studies, but its long-term effects on health of cows and productivity still need to be determined.Key words: Review, flax, dairy


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 919
Author(s):  
Verónica M. Merino ◽  
Lorena Leichtle ◽  
Oscar A. Balocchi ◽  
Francisco Lanuza ◽  
Julián Parga ◽  
...  

The aim was to determine the effect of the herbage allowance (HA) and supplement type (ST) on dry matter intake (DMI), milk production and composition, grazing behavior, rumen function, and blood metabolites of grazing dairy cows in the spring season. Experiment I: 64 Holstein Friesian dairy cows were distributed in a factorial design that tested two levels of daily HA (20 and 30 kg of dry matter (DM) per cow) and two ST (high moisture maize (HMM) and cracked wheat (CW)) distributed in two daily rations (3.5 kg DM/cow/day). Experiment II: four mid-lactation rumen cannulated cows, supplemented with either HMM or CW and managed with the two HAs, were distributed in a Latin square design of 4 × 4, for four 14-d periods to assess ruminal fermentation parameters. HA had no effect on milk production (averaging 23.6 kg/day) or milk fat and protein production (823 g/day and 800 g/day, respectively). Cows supplemented with CW had greater protein concentration (+1.2 g/kg). Herbage DMI averaged 14.17 kg DM/cow.day and total DMI averaged 17.67 kg DM/cow.day and did not differ between treatments. Grazing behavior activities (grazing, rumination, and idling times) and body condition score (BCS) were not affected by HA or ST. Milk and plasma urea concentration increased under the high HA (+0.68 mmol/L and +0.90 mmol/L, respectively). Cows supplemented with HMM had lower milk and plasma urea concentrations (0.72 mmol/L and 0.76 mmol/L less, respectively) and tended (p = 0.054) to have higher plasma β-hydroxybutyrate. Ruminal parameters did not differ between treatments.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


2020 ◽  
Vol 87 (3) ◽  
pp. 334-340
Author(s):  
Elisa Manzocchi ◽  
Werner Hengartner ◽  
Michael Kreuzer ◽  
Katrin Giller

AbstractThis research paper addresses the hypotheses (1) that milk produced from hay-fed cows differs from that of silage-fed cows and (2) that silage type has an important impact, too. Four diets differing in forage type but with equal estimated milk production potential and a forage:concentrate ratio of 0.85 : 0.15 were compared regarding their effect on feed intake, milk yield and milk properties. The forages tested were hay, grass silage, conventional short-chopped and long-chopped maize silage subjected to a novel processing technology (Shredlage®). Twenty-four dairy cows were fed two of the four diets in two consecutive runs in an incomplete (4 × 2) Latin-square design (n = 12 per diet). Each experimental period lasted 22 d, with 12 d of adaptation and 10 d of sampling. During sampling, feed intake and milk yield were recorded daily, milk composition and coagulation properties were determined four times. The composition of the diet ingredients was analysed weekly. Data were analysed with a mixed model considering feed, period and their interaction as fixed effects. Stage of lactation, milk yield and milk composition from the pre-experimental period were used as covariates in the model. Dry matter intake was lower with the long-chopped processed maize silage compared to the other three groups. There were some diet differences in intakes of net energy for lactation and absorbable protein in the duodenum, but this did not result in changes in milk yield. The milk fat content was higher with the grassland-based diets compared to the maize silage diets. No treatment effect on milk acidity and rennet coagulation properties was observed. In conclusion, there were no indications for specific physico-chemical properties of milk from a hay-based diet, and maize processing technology was not of large effect either. Future investigations should focus on sensory differentiation of the milk produced with different forages.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1256
Author(s):  
Senén De La Torre-Santos ◽  
Luis J. Royo ◽  
Adela Martínez-Fernández ◽  
Cristina Chocarro ◽  
Fernando Vicente

The optimization of milk production includes a rational use of forages, respect for the environment and offers the best quality to consumers. Milk production based on grass and forages produces healthier milk and it is widely spread throughout the Atlantic arc to maximize milk yield per hectare. However, the mode of offering the grass can have a major influence on milk composition. The aim of this study was to evaluate the effect of grass supply mode (grazing, zero-grazing or ensiling) on dairy cows’ performance, with particular reference to fatty acids and fat-soluble antioxidants concentration. A three by three Latin square experiment was performed with 18 dairy cows. Experimental treatments consisted of exclusive feeding with grass silage and zero-grazing, both offered ad libitum indoors, or grazing for 24 h. The results showed that grazing cows had a higher dry matter intake and greater milk yield than cows feeding on grass silage and zero-grazing, as well as higher concentrations of protein, lactose, nonfat-solids and urea in milk than housed cows. Milk fat from grazing cows had a higher proportion of unsaturated fatty acids than from cows feeding on grass silage and zero-grazing, with significant differences in the proportion of vaccenic and rumenic acids. The 18:1 trans-11 to 18:1 trans-10 ratio is proposed as biomarker to identify the milk produced from the management system of grazing cattle. Milk from grazing cows had a greater proportion of lutein than cows eating grass silage, with the zero-grazing system having intermediate values. In conclusion, the mode of grass supply affects fatty acid and antioxidant profiles of milk.


2003 ◽  
Vol 2003 ◽  
pp. 107-107
Author(s):  
M. H. Fathi ◽  
A. Nikkhah

Cereal grains can provide the major source of energy in diets in order to meet the nutrient requirements of high producing dairy cows. However the amount of starch that can be included in the diets of dairy cows is limited particularly if starch is rapidly fermented such as barley starch. Reduction of feed intake, rumen pH, milk fat test, microbial growth and other metabolic disorders are expected if ruminally degradable starch is fed in amount that cant be efficiently metabolized by rumen microbs. Various techniques for processing barley grain have been developed to decrease the degradability of dry matter in rumen without reducing its extent of digestion. McNiven (1995) showed roasting of barley is more effective treatment. The objective of this experiment was to study of effects the roasting and ammoniation of barley grain on rumen pH, feces pH, milk yield and milk composition in dairy cows.


1995 ◽  
Vol 58 (2) ◽  
pp. 132-138 ◽  
Author(s):  
SHAWN M. SCHAFFER ◽  
SITA R. TATINI ◽  
ROBERT J. BAER

Milk containing naturally modified fat was obtained by feeding lactating dairy cows a Control diet and two experimental diets containing either extruded soybeans or sunflower seeds. Milk from cows fed the experimental diets contained higher levels of both long chain (C18-C18:2) and unsaturated fatty acids than the milk from cows fed the Control diet. Each milk was pasteurized, standardized to 3.6% milk fat, and inoculated with Listeria monocytogenes (strains Scott A and V7), Salmonella typhimurium and Salmonella senftenberg, before manufacturing into Blue or stirred-curd Cheddar cheeses. Populations of L. monocytogenes and Salmonella spp. were monitored during manufacture and aging using Oxford and Xylose Lysine Desoxycholate agars, respectively. During the manufacture of Blue and Cheddar cheese, and during the aging of Blue cheese, behavior of Salmonella spp. and L. monocytogenes in the experimental cheese was similar to the Control cheese. During aging of Cheddar cheese, the rate and extent of decline of Salmonella spp. and L. monocytogenes varied among the cheeses. Declines correlated with the accumulation of specific fatty acids, namely C12, C14, C18:1 and C18:2. These fatty acids were also found to be inhibitory to S. typhimurium and L. monocytogenes when incorporated into tryptic soy agar plates at 37°C. Therefore, the natural fat modification of Blue and Cheddar cheeses enhanced the safety of these cheeses.


1994 ◽  
Vol 74 (4) ◽  
pp. 595-600 ◽  
Author(s):  
F. Enjalbert ◽  
M. C. Nicot ◽  
D. Griess ◽  
M. Vernay ◽  
R. Moncoulon

Four sheep cannulated in the rumen and proximal duodenum were used in a 4 × 4 cross-over design to investigate the effects of ruminal fatty acid (FA) infusion on duodenal and serum FA profiles. The diets were composed of 85.7% natural grassland hay and 8.6% concentrate supplemented with 5.7% soy oil for diet SO, 5.7% emulsified soy oil for diet ESO, 6.7% calcium salts of soy or palm FA for diets CaSSO and CaSP, respectively. Diets were formulated to be isonitrogenous and isoenergetic; total FA content in dry matter was 6.4–6.6%. Characteristics of ruminal fermentation were not affected by source or physical form of FA. The proportion of stearic acid in the duodenal flow (% of the total C18) was high compared with total diet, e.g., 49.8 vs. 3.5 and 54.3 vs. 9.4% for soy and palm diets, respectively. Ruminal biohydrogenation and unsaturated FA was lower for CaS diets than for SO and ESO diets (48.7 and 60.9 vs. 81.2 and 94.7%, for oleic and linoleic acids, respectively). As a result, trans-vaccenic acid levels in duodenal flow and serum (% or total FA) were lower for the CaS diets than for SO and ESO diets (8.3 vs. 36.0% and 0.9 vs. 7.8%, respectively). Unsaturated FA as CaS were partly protected against ruminal biohydrogenation, and can be effective in increasing intestinal absorption of unsaturated FA. Key words: Unsaturated fatty acids, soy oil, calcium salts, biohydrogenation, sheep


Author(s):  
Ludmila Křížová ◽  
Jiří Třináctý ◽  
Jarmila Svobodová ◽  
Michal Richter ◽  
Vladimír Černý ◽  
...  

The objective of this study was to determine the effect of supplemental lysine (Lys), methionine (Met) or both added to diet of dairy cows in the form of rumen-protected (RP) tablets on changes in milk fatty acids (FA) profile. The trial was carried out on four lactating Holstein cows in the form of Latin square design and was divided into 4 periods of 14 d (10-d preliminary period and a 4-d experimental period). The four treatments were as follows: C – control without amino acids (AA) supplementation, L – supplement of RP Lys, M – supplement of RP Met and ML – supplement of RP Met and Lys. Cows were fed on a diet based on maize silage, lucerne hay and supplemental mixture. Milk yield in ML (34.18 kg/d) was higher than in L or M (32.46 kg and 32.13 kg, respectively, P < 0.05) and tended to be higher than in C (33.33 kg/d, P > 0.05). Protein yield in ML (1054 g / d) was higher than that found in C, L or M (990, 998 or 968 g / d, respectively, P < 0.05). Milk fat content and yield in C and ML was higher in comparison to L and M (P < 0.05). Content of short-chain FA (C 4:0–C 12:0) was not affected by the treatment except of L that was lower than in C (P < 0.05). Content of medium-chain FA in M was lower compared to C, L or ML (P < 0.05). The content of long-chain FA in M was significantly higher than in other groups (P < 0.05). The total content of SFA in M was lower than in C or ML (P < 0.05) and tended to be lower than in L. Contents of UFA, MUFA and PUFA in M were higher than in C and ML (P < 0.05).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Patrycja Rajtar ◽  
Marek Sady ◽  
Paweł Górka ◽  
Sylvia Kehoe ◽  
Piotr Micek

Abstract Grain from traditional varieties of rye is not commonly used in dairy cattle nutrition. However, new hybrid varieties of rye currently available are characterized by some nutritional and agrotechnical benefits. This paper deals with the hypothesis that rye grain derived from a hybrid variety may be an alternative for maize grain in diets for dairy cattle. Sixteen lactating Polish Holstein-Friesian cows were divided into two groups according to their parity (8 primi- and 8 multiparous), stage of lactation (106 ± 30 days after calving) and milk yield (34 ± 4 kg/day). Cows were fed a total mixed ration (TMR) containing grass silage and whole crop maize silage and 29.2% of the concentrate (in dry matter). The latter contained approximately 48% of either maize grain (M) or hybrid rye grain (HR) as a main source of cereal grain. Experimental diets were fed for 9-weeks. The use of HR as a substitute for M did not affect (P>0.05) dry matter intake and milk yield. There were no differences between treatment groups in the content of milk solids, amino acids, and fatty acid profile. However, substituting M by HR positively influenced composition of milk protein fractions by increasing the proportion of α-casein (37.0 vs 39.7%; P<0.01) and к-casein (6.5 vs 7.3%; P=0.02) as well as decreasing the proportion of β-casein (28.8 vs 27.8%; P=0.02) and sensory characteristics of the milk (body and texture and taste; P<0.05). In turn, the composition of the diet did not affect the technological suitability for processing of milk fat (acid and peroxide number, melting and solidification temperature), rennet coagulation time, heat stability or titratable acidity. This study has shown that hybrid rye grain may be an alternative for maize grain in a TMR based on grass and whole maize silage for mid-lactation dairy cows. Further studies are needed with higher proportion of hybrid rye grain in TMR or with other roughages used in a basal diet to fully determine efficiency of hybrid rye grain use in diets for dairy cows.


Sign in / Sign up

Export Citation Format

Share Document