Long-chain fatty acids differentially alter lipogenesis in bovine and caprine mammary slices

2012 ◽  
Vol 80 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Laurence Bernard ◽  
Mohamad B. Montazer Torbati ◽  
Benoit Graulet ◽  
Christine Leroux ◽  
Yves Chilliard

Indirect comparisons from studies in vivo have suggested that caprine mammary tissue is less sensitive than bovine mammary tissue to the anti-lipogenic effect of long-chain fatty acids (LCFA), including specific rumen biohydrogenation (RBH) intermediates of polyunsaturated fatty acids (PUFA). Our objective was to investigate the effects on lipogenesis of 18-carbon LCFA differing in the degree of unsaturation and/or double bond conformation using cultured slices of bovine and caprine mammary tissues. Mammary tissues were collected from five multiparous Holstein × Normande cows and six multiparous Alpine goats in mid lactation. The expression of genes involved in milk component synthesis was measured in tissues collected at slaughter and after slice preparation:FASN, SCD1, CD36, SREBF1andPPARG1mRNA levels were higher in bovine than caprine samples, whereas the opposite was observed forCSN2mRNA levels. Bovine and caprine mammary slices were incubated for 20 h in a medium with BSA (control), cis-9-18 : 1, 18 : 2n-6, 18 : 3n-3, cis-9, trans-11-CLA, or trans-10, cis-12-CLA (the latter at 3 increasing concentrations: C1 (0·11 mm), C2 (0·16 mm), C3 (0·37 mm)). Lipogenesis was estimated by measuring the incorporation of14C-acetate into total lipid. Significant differences of individual LCFA (P < 0·05) were observed between species: bovine tissue showed a decrease in total lipogenesis with 18 : 2n-6, 18 : 3n-3, trans-10,cis-12-CLA (C2 and C3) while caprine tissue showed an increase after treatment with 18 : 3n-3, cis-9, trans-11-CLA or trans-10, cis-12-CLA (C3). These results were not related to the mRNA abundance of our set of genes in the mammary slices after incubation. In conclusion, this study demonstrates that caprine mammary slices reacted differently from bovine mammary slices to the anti-lipogenic activity of specific LCFA and suggests that regulation of lipogenesis via other genes and/or at protein level and enzyme activity may be involved.

1990 ◽  
Vol 41 (1) ◽  
pp. 129 ◽  
Author(s):  
KR King ◽  
CR Stockdale ◽  
TE Trigg

This experiment studied the effects of feeding a supplement of a blend of unesterified and saturated long-chain fatty acids on the productivity of dairy cows in mid-lactation. Twenty-three cows in their fourth month of lactation were individually fed ad libitum, a mixed balanced ration based on maize silage, lucerne hay and rolled grain. Varying quantities, up to 1020 g cow-1 day-1 of the fatty acid supplement, were mixed into the ration. Yields of milk and milk products were linearly related to total long-chain fatty acid intake. Milk fat content increased linearly while milk protein content averaged 3.59 (s.d. � 0.15)%. The marginal returns from feeding 1 kg of the supplement were 3.3 kg milk, 0.33 kg fat and 0.07 kg protein. The proportions of C 10:0, C12:0 and C 14:0 fatty acids in milk were decreased, while those of C 18:0 and C18:1 were increased as the result of feeding long-chain fatty acids. The concentration of lipid in plasma was increased, but acetate and D-(3)-hydroxybutyrate levels in blood remained unchanged with increased levels of dietary long-chain fatty acid. Efficiency of milk production was increased by 11% from feeding 1 kg of the supplement. In vivo digestibilities of dry matter, neutral and acid detergent fibres, and dietary long-chain fatty acids were unaffected by supplement.


2011 ◽  
Vol 70 (OCE3) ◽  
Author(s):  
C. J. Harden ◽  
A. N. Jones ◽  
T. Maya-Jimenez ◽  
M. E. Barker ◽  
N. J. Hepburn ◽  
...  

1993 ◽  
Vol 3 (5-6) ◽  
pp. 433-438 ◽  
Author(s):  
B. Gillet ◽  
B.-T. Doan ◽  
C. Verre-Serrie ◽  
B. Barbere ◽  
G. Berenger ◽  
...  

2011 ◽  
Vol 107 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Massimo Bionaz ◽  
Betsy J. Thering ◽  
Juan J. Loor

Madin–Darby Bovine Kidney cells cultured with 150 μm of Wy-14 643 (WY, PPARα agonist) or twelve long-chain fatty acids (LCFA; 16 : 0, 18 : 0, cis-9–18 : 1, trans-10–18 : 1, trans-11–18 : 1, 18 : 2n-6, 18 : 3n-3, cis-9, trans-11–18 : 2, trans-10, cis-12–18 : 2, 20 : 0, 20 : 5n-3 and 22 : 6n-3) were used to uncover PPAR-α target genes and determine the effects of LCFA on expression of thirty genes with key functions in lipid metabolism and inflammation. Among fifteen known PPAR-α targets in non-ruminants, ten had greater expression with WY, suggesting that they are bovine PPAR-α targets. The expression of SPP1 and LPIN3 was increased by WY, with no evidence of a similar effect in the published literature, suggesting that both represent bovine-specific PPAR-α targets. We observed the strongest effect on the expression of PPAR-α targets with 16 : 0, 18 : 0 and 20 : 5n-3.When considering the overall effect on expression of the thirty selected genes 20 : 5n-3, 16 : 0 and 18 : 0 had the greatest effect followed by 20 : 0 and c9t11–18 : 2. Gene network analysis indicated an overall increase in lipid metabolism by WY and all LCFA with a central role of PPAR-α but also additional putative transcription factors. A greater increase in the expression of inflammatory genes was observed with 16 : 0 and 18 : 0. Among LCFA, 20 : 5n-3, 16 : 0 and 18 : 0 were the most potent PPAR-α agonists. They also affected the expression of non-PPAR-α targets, eliciting an overall increase in the expression of genes related to lipid metabolism, signalling and inflammatory response. Data appear to highlight a teleological evolutionary adaptation of PPAR in ruminants to cope with the greater availability of saturated rather than unsaturated LCFA.


1986 ◽  
Vol 69 (5) ◽  
pp. 1293-1301 ◽  
Author(s):  
William Chalupa ◽  
Bonnie Vecchiarelli ◽  
Andrew E. Elser ◽  
D.S. Kronfeld ◽  
David Sklan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document